Part IB — Electromagnetism Theorems

Based on lectures by D. Tong Notes taken by Dexter Chua

Lent 2015

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Electromagnetism and Relativity

Review of Special Relativity; tensors and index notation. Lorentz force law. Electromagnetic tensor. Lorentz transformations of electric and magnetic fields. Currents and the conservation of charge. Maxwell equations in relativistic and non-relativistic forms.

Electrostatics

Gauss's law. Application to spherically symmetric and cylindrically symmetric charge distributions. Point, line and surface charges. Electrostatic potentials; general charge distributions, dipoles. Electrostatic energy. Conductors. [3]

Magnetostatics

Magnetic fields due to steady currents. Ampre's law. Simple examples. Vector potentials and the Biot-Savart law for general current distributions. Magnetic dipoles. Lorentz force on current distributions and force between current-carrying wires. Ohm's law.

Electrodynamics

Faraday's law of induction for fixed and moving circuits. Electromagnetic energy and Poynting vector. 4-vector potential, gauge transformations. Plane electromagnetic waves in vacuum, polarization. [5]

Contents

0	Intr	roduction	3
1	Pre	liminaries	4
	1.1	Charge and Current	4
	1.2	Forces and Fields	4
2	Elec	etrostatics	5
	2.1	Gauss' Law	5
	2.2	Electrostatic potential	5
		2.2.1 Point charge	5
		2.2.2 Dipole	5
		2.2.3 General charge distribution	5
		2.2.4 Field lines and equipotentials	5
	2.3	Electrostatic energy	5
	2.4	Conductors	5
3	Ma	gnetostatics	6
	3.1	Ampere's Law	6
	3.2	Vector potential	6
	3.3	Magnetic dipoles	6
	3.4	Magnetic forces	6
4	Flor	etrodynamics	7
	4.1	Induction	7
	4.1	Magnetostatic energy	7
	4.2	Resistance	7
	4.4	Displacement currents	7
	4.4	Electromagnetic waves	7
	4.6	Poynting vector	7
	4.0	Toynting vector	'
5		etromagnetism and relativity	8
	5.1	A review of special relativity	8
		5.1.1 A geometric interlude on (co)vectors	8
		5.1.2 Transformation rules	8
		5.1.3 Vectors and covectors in SR	8
	5.2	Conserved currents	8
	5.3	Gauge potentials and electromagnetic fields	8
	5.4	Maxwell Equations	8
	5.5	The Lorentz force law	8

0 Introduction

1 Preliminaries

1.1 Charge and Current

Law (Continuity equation).

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0.$$

1.2 Forces and Fields

Law (Lorentz force law).

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Law (Maxwell's Equations).

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{J},$$

where we have two constants of nature:

- $\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{m}^{-3} \, \mathrm{kg}^{-1} \, \mathrm{s}^2 \, \mathrm{C}^2$ is the electric constant;
- $-\mu_0 = 4\pi \times 10^{-6} \,\mathrm{m\,kg\,C^{-2}}$ is the magnetic constant.

Some prefer to call these constants the "permittivity of free space" and "permeability of free space" instead. But why bother with these complicated and easily-confused names when we can just call them "electric constant" and "magnetic constant"?

2 Electrostatics

2.1 Gauss' Law

Law (Gauss' law).

$$\int_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{Q}{\varepsilon_0},$$

where Q is the total charge inside V.

2.2 Electrostatic potential

- 2.2.1 Point charge
- **2.2.2** Dipole
- 2.2.3 General charge distribution
- 2.2.4 Field lines and equipotentials

2.3 Electrostatic energy

Proposition.

$$U = \frac{\varepsilon_0}{2} \int \mathbf{E} \cdot \mathbf{E} \, \mathrm{d}^3 \mathbf{r}.$$

2.4 Conductors

3 Magnetostatics

3.1 Ampere's Law

Law (Ampere's law).

$$\oint_C \mathbf{B} \cdot \mathrm{d}\mathbf{r} = \mu_0 I,$$

where I is the current through the surface.

3.2 Vector potential

Proposition. We can always pick χ such that $\nabla \cdot \mathbf{A}' = 0$.

Law (Biot-Savart law). The magnetic field is

$$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A} = \frac{\mu_0}{4\pi} \int \mathbf{J}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \ \mathrm{d}V'.$$

If the current is localized on a curve, this becomes

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \oint_C d\mathbf{r}' \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3},$$

since $\mathbf{J}(\mathbf{r}')$ is non-zero only on the curve.

3.3 Magnetic dipoles

3.4 Magnetic forces

Electrodynamics 4

4.1 Induction

Law (Faraday's law of induction).

$$\mathcal{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}.$$

4.2Magnetostatic energy

Proposition. The energy stored in a magnetic field is

$$U = \frac{1}{2\mu_0} \int \mathbf{B} \cdot \mathbf{B} \, \mathrm{d}V.$$

4.3 Resistance

Law (Ohm's law).

$$\mathcal{E} = IR$$
,

Law (Ohm's law).

$$J = \sigma E$$
.

4.4 Displacement currents

4.5 Electromagnetic waves

4.6 Poynting vector

Theorem (Poynting theorem).

$$\underbrace{\frac{\mathrm{d} U}{\mathrm{d} t} + \int_V \mathbf{J} \cdot \mathbf{E} \, \mathrm{d} V}_{\text{Total change of energy in } V \text{ (fields + particles)}} = \underbrace{-\frac{1}{\mu_0} \int_S (\mathbf{E} \times \mathbf{B}) \cdot \mathrm{d} S}_{\text{Energy that escapes through the surface } S}$$

5 Electromagnetism and relativity

- 5.1 A review of special relativity
- 5.1.1 A geometric interlude on (co)vectors
- 5.1.2 Transformation rules
- 5.1.3 Vectors and covectors in SR
- 5.2 Conserved currents
- 5.3 Gauge potentials and electromagnetic fields
- 5.4 Maxwell Equations
- 5.5 The Lorentz force law