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These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Metrics
Definition and examples. Limits and continuity. Open sets and neighbourhoods.
Characterizing limits and continuity using neighbourhoods and open sets. [3]

Topology
Definition of a topology. Metric topologies. Further examples. Neighbourhoods, closed
sets, convergence and continuity. Hausdorff spaces. Homeomorphisms. Topologi-
cal and non-topological properties. Completeness. Subspace, quotient and product
topologies. [3]

Connectedness
Definition using open sets and integer-valued functions. Examples, including inter-
vals. Components. The continuous image of a connected space is connected. Path-
connectedness. Path-connected spaces are connected but not conversely. Connected
open sets in Euclidean space are path-connected. [3]

Compactness

Definition using open covers. Examples: finite sets and [0, 1]. Closed subsets of

compact spaces are compact. Compact subsets of a Hausdorff space must be closed.

The compact subsets of the real line. Continuous images of compact sets are compact.

Quotient spaces. Continuous real-valued functions on a compact space are bounded

and attain their bounds. The product of two compact spaces is compact. The compact

subsets of Euclidean space. Sequential compactness. [3]
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1 Metric spaces IB Metric and Topological Spaces (Theorems with proof)

1 Metric spaces

1.1 Definitions

Proposition. If (X, d) is a metric space, (xn) is a sequence in X such that
xn → x, xn → x′, then x = x′.

Proof. For any ε > 0, we know that there exists N such that d(xn, x) < ε/2 if
n > N . Similarly, there exists some N ′ such that d(xn, x

′) < ε/2 if n > N ′.
Hence if n > max(N,N ′), then

0 ≤ d(x, x′)

≤ d(x, xn) + d(xn, x
′)

= d(xn, x) + d(xn, x
′)

≤ ε.

So 0 ≤ d(x, x′) ≤ ε for all ε > 0. So d(x, x′) = 0, and x = x′.

1.2 Examples of metric spaces

1.3 Norms

Lemma. If ‖ · ‖ is a norm on V , then

d(v,w) = ‖v −w‖

defines a metric on V .

Proof.

(i) d(v,w) = ‖v −w‖ ≥ 0 by the definition of the norm.

(ii) d(v,w) = 0⇔ ‖v −w‖ = 0⇔ v −w = 0⇔ v = w.

(iii) d(w,v) = ‖w − v‖ = ‖(−1)(v −w)‖ = | − 1|‖v −w‖ = d(v,w).

(iv) d(u,v) + d(v,w) = ‖u− v‖+ ‖v −w‖ ≥ ‖u−w‖ = d(u,w).

Lemma. Let f ∈ C[0, 1] satisfy f(x) ≥ 0 for all x ∈ [0, 1]. If f(x) is not

constantly 0, then
∫ 1

0
f(x) dx > 0.

Proof. Pick x0 ∈ [0, 1] with f(x0) = a > 0. Then since f is continuous, there is
a δ such that |f(x)− f(x0)| < a/2 if |x− x0| < δ. So |f(x)| > a/2 in this region.

Take

g(x) =

{
a/2 |x− x0| < δ

0 otherwise

Then f(x) ≥ g(x) for all x ∈ [0, 1]. So∫ 1

0

f(x) dx ≥
∫ 1

0

g(x) dx =
a

2
· (2δ) > 0.

Theorem (Cauchy-Schwarz inequality). If 〈 · , · 〉 is an inner product, then

〈v,w〉2 ≤ 〈v,v〉〈w,w〉.
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1 Metric spaces IB Metric and Topological Spaces (Theorems with proof)

Proof. For any x, we have

〈v + xw,v + xw〉 = 〈v,v〉+ 2x〈v,w〉+ x2〈w,w〉 ≥ 0.

Seen as a quadratic in x, since it is always non-negative, it can have at most one
real root. So

(2〈v,w〉)2 − 4〈v,v〉〈w,w〉 ≤ 0.

So the result follows.

Lemma. If 〈 · , · 〉 is an inner product on V , then

‖v‖ =
√
〈v,v〉

is a norm.

Proof.

(i) ‖v‖ =
√
〈v,v〉 ≥ 0.

(ii) ‖v‖ = 0⇔ 〈v,v〉 = 0⇔ v = 0.

(iii) ‖λv‖ =
√
〈λv, λv〉 =

√
λ2〈v,v〉 = |λ|‖v‖.

(iv)

(‖v‖+ ‖w‖)2 = ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

≥ 〈v,v〉+ 2〈v,w〉+ 〈w,w〉
= ‖v + w‖2

1.4 Open and closed subsets

Lemma. The open ball Br(x) ⊆ X is an open subset, and the closed ball
B̄r(x) ⊆ X is a closed subset.

Proof. Given y ∈ Br(x), we must find δ > 0 with Bδ(y) ⊆ Br(x).

v1

v2

r
y

Since y ∈ Br(x), we must have a = d(y, x) < r. Let δ = r − a > 0. Then if
z ∈ Bδ(y), then

d(z, x) ≤ d(z, y) + d(y, x) < (r − a) + a = r.

So z ∈ Br(x). So Bδ(y) ⊆ Br(x) as desired.
The second statement is equivalent to X \ B̄r(x) = {y ∈ X : d(y, x) > r} is

open. The proof is very similar.
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1 Metric spaces IB Metric and Topological Spaces (Theorems with proof)

Lemma. If U is an open neighbourhood of x and xn → x, then ∃N such that
xn ∈ U for all n > N .

Proof. Since U is open, there exists some δ > 0 such that Bδ(x) ⊆ U . Since
xn → x, ∃N such that d(xn, x) < δ for all n > N . This implies that xn ∈ Bδ(x)
for all n > N . So xn ∈ U for all n > N .

Proposition. C ⊆ X is a closed subset if and only if every limit point of C is
an element of C.

Proof. (⇒) Suppose C is closed and xn → x, xn ∈ C. We have to show that
x ∈ C.

Since C is closed, A = X \C ⊆ X is open. Suppose the contrary that x 6∈ C.
Then x ∈ A. Hence A is an open neighbourhood of x. Then by our previous
lemma, we know that there is some N such that xn ∈ A for all n ≥ N . So
xN ∈ A. But we know that xN ∈ C by assumption. This is a contradiction. So
we must have x ∈ C.

(⇐) Suppose that C is not closed. We have to find a limit point not in C.
Since C is not closed, A is not open. So ∃x ∈ A such that Bδ(x) 6⊆ A for all

δ > 0. This means that Bδ(x) ∩ C 6= ∅ for all δ > 0.
So pick xn ∈ B 1

n
(x)∩C for each n > 0. Then xn ∈ C, d(xn, x) = 1

n → 0. So
xn → x. So x is a limit point of C which is not in C.

Proposition (Characterization of continuity). Let (X, dx) and (Y, dy) be metric
spaces, and f : X → Y . The following conditions are equivalent:

(i) f is continuous

(ii) If xn → x, then f(xn)→ f(x) (which is the definition of continuity)

(iii) For any closed subset C ⊆ Y , f−1(C) is closed in X.

(iv) For any open subset U ⊆ Y , f−1(U) is open in X.

(v) For any x ∈ X and ε > 0, ∃δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).
Alternatively, dx(x, z) < δ ⇒ dy(f(x), f(z)) < ε.

Proof.

– 1⇔ 2: by definition

– 2⇒ 3: Suppose C ⊆ Y is closed. We want to show that f−1(C) is closed.
So let xn → x, where xn ∈ f−1(C).

We know that f(xn) → f(x) by (2) and f(xn) ∈ C. So f(x) is a limit
point of C. Since C is closed, f(x) ∈ C. So x ∈ f−1(C). So every limit
point of f−1(C) is in f−1(C). So f−1(C) is closed.

– 3 ⇒ 4: If U ⊆ Y is open, then Y \ U is closed in Y. So f−1(Y \ U) =
X \ f−1(U) is closed in X. So f−1(U) ⊆ X is open.

– 4 ⇒ 5: Given x ∈ X, ε > 0, Bε(f(x)) is open in Y . By (4), we know
f−1(Bε(f(x))) = A is open in X. Since x ∈ A, ∃δ > 0 with Bδ(x) ⊆ A.
So

f(Bδ(x)) ⊆ f(A) = f(f−1(Bε(f(x)))) = Bε(f(x))
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– 5 ⇒ 2: Suppose xn → x. Given ε > 0, ∃δ > 0 such that f(Bδ(x)) ⊆
Bε(f(x)). Since xn → x, ∃N such that xn ∈ Bδ(x) for all n > N . Then
f(xn) ∈ f(Bδ(x)) ⊆ Bε(f(x)) for all n > N . So f(xn)→ f(x).

Lemma.

(i) ∅ and X are open subsets of X.

(ii) Suppose Vα ⊆ X is open for all α ∈ A. Then U =
⋃
α∈A

Vα is open in X.

(iii) If V1, · · · , Vn ⊆ X are open, then so is V =

n⋂
i=1

Vi.

Proof.

(i) ∅ satisfies the definition of an open subset vacuously. X is open since for
any x, B1(x) ⊆ X.

(ii) If x ∈ U , then x ∈ Vα for some α. Since Vα is open, there exists δ > 0

such that Bδ(x) ⊆ Vα. So Bδ(x) ⊆
⋃
α∈A

Vα = U . So U is open.

(iii) If x ∈ V , then x ∈ Vi for all i = 1, · · · , n. So ∃δi > 0 with Bδi(x) ⊆ Vi.
Take δ = min{δ1, · · · , δn}. So Bδ(x) ⊆ Vi for all i. So Bδ(x) ⊆ V . So V is
open.
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2 Topological spaces

2.1 Definitions

Lemma. If f : X → Y and g : Y → Z are continuous, then so is g ◦ f : X → Z.

Proof. If U ⊆ Z is open, g is continuous, then g−1(U) is open in Y . Since f is
also continuous, f−1(g−1(U)) = (g ◦ f)−1(U) is open in X.

Lemma. Homeomorphism is an equivalence relation.

Proof.

(i) The identity map IX : X → X is always a homeomorphism. So X ' X.

(ii) If f : X → Y is a homeomorphism, then so is f−1 : Y → X. So
X ' Y ⇒ Y ' X.

(iii) If f : X → Y and g : Y → Z are homeomorphisms, then g ◦ f : X → Z is
a homeomorphism. So X ' Y and Y ' Z implies X ' Z.

2.2 Sequences

Lemma. If X is Hausdorff, xn is a sequence in X with xn → x and xn → x′,
then x = x′, i.e. limits are unique.

Proof. Suppose the contrary that x 6= x′. Then by definition of Hausdorff, there
exist open neighbourhoods U,U ′ of x, x′ respectively with U ∩ U ′ = ∅.

Since xn → x and U is a neighbourhood of x, by definition, there is some N
such that whenever n > N , we have xn ∈ U . Similarly, since xn → x′, there is
some N ′ such that whenever n > N ′, we have xn ∈ U ′.

This means that whenever n > max(N,N ′), we have xn ∈ U and xn ∈ U ′.
So xn ∈ U ∩ U ′. This contradicts the fact that U ∩ U ′ = ∅.

Hence we must have x = x′.

2.3 Closed sets

Lemma.

(i) If Cα is a closed subset of X for all α ∈ A, then
⋂
α∈A Cα is closed in X.

(ii) If C1, · · · , Cn are closed in X, then so is
⋃n
i=1 Ci.

Proof.

(i) Since Cα is closed in X, X \ Cα is open in X. So
⋃
α∈A(X \ Cα) =

X \
⋂
α∈A Cα is open. So

⋂
α∈A Cα is closed.

(ii) If Ci is closed in X, then X \ Ci is open. So
⋂n
i=1(X \ Ci) = X \

⋃n
i=1 Ci

is open. So
⋃n
i=1 Ci is closed.

Corollary. If X is Hausdorff and x ∈ X, then {x} is closed in X.

Proof. For all y ∈ X, there exist open subsets Uy, Vy with y ∈ Uy, x ∈ Vy,
Uy ∩ Vy = ∅.

Let Cy = X \ Uy. Then Cy is closed, y 6∈ Cy, x ∈ Cy. So {x} =
⋂
y 6=x Cy is

closed since it is an intersection of closed subsets.

8



2 Topological spacesIB Metric and Topological Spaces (Theorems with proof)

2.4 Closure and interior

2.4.1 Closure

Proposition. Ā is the smallest closed subset of X which contains A.

Proof. Let K ⊆ X be a closed set containing A. Then K ∈ CA. So Ā =⋂
C∈CA C ⊆ K. So Ā ⊆ K.

Lemma. If C ⊆ X is closed, then L(C) = C.

Proof. Exactly the same as that for metric spaces. We will also prove a more
general result very soon that implies this.

Proposition. L(A) ⊆ Ā.

Proof. If A ⊆ C, then L(A) ⊆ L(C). If C is closed, then L(C) = C. So
C ∈ CA ⇒ L(A) ⊆ C. So L(A) ⊆

⋂
C∈CA C = Ā.

Corollary. Given a subset A ⊆ X, if we can find some closed C such that
A ⊆ C ⊆ L(A), then we in fact have C = Ā.

Proof. C ⊆ L(A) ⊆ Ā ⊆ C, where the last step is since Ā is the smallest closed
set containing A. So C = L(A) = Ā.

2.4.2 Interior

Proposition. Int(A) is the largest open subset of X contained in A.

Proposition. X \ Int(A) = X \A

Proof. U ⊆ A⇔ (X \U) ⊇ (X \A). Also, U open in X ⇔ X \U is closed in X.
So the complement of the largest open subset of X contained in A will be

the smallest closed subset containing X \A.

2.5 New topologies from old

2.5.1 Subspace topology

Proposition. The subspace topology is a topology.

Proof.

(i) Since ∅ is open in X, ∅ = Y ∩ ∅ is open in Y .

Since X is open in X, Y = Y ∩X is open in Y .

(ii) If Vα is open in Y , then Vα = Y ∩ Uα for some Uα open in X. Then

⋃
α∈A

Vα =
⋃
α∈A

(Y ∩ Uα) = Y ∩

(⋃
α∈U

Uα

)
.

Since
⋃
Uα is open in X, so

⋃
Vα is open in Y .

9
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(iii) If Vi is open in Y , then Vi = Y ∩ Ui for some open Ui ⊆ X. Then

n⋂
i=1

Vi =

n⋂
i=1

(Y ∩ Ui) = Y ∩

(
n⋂
i=1

Ui

)
.

Since
⋂
Ui is open,

⋂
Vi is open.

Proposition. If Y has the subspace topology, f : Z → Y is continuous iff
ι ◦ f : Z → X is continuous.

Proof. (⇒) If U ⊆ X is open, then ι−1(U) = Y ∩ U is open in Y . So ι is
continuous. So if f is continuous, so is ι ◦ f .

(⇐) Suppose we know that ι ◦ f is continuous. Given V ⊆ Y is open, we
know that V = Y ∩ U = ι−1(U). So f−1(V ) = f−1(ι−1(U))) = (ι ◦ f)−1(U) is
open since ι ◦ f is continuous. So f is continuous.

2.5.2 Product topology

2.5.3 Quotient topology
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3 Connectivity

3.1 Connectivity

Proposition. X is disconnected iff there exists a continuous surjective f : X →
{0, 1} with the discrete topology.

Alternatively, X is connected iff any continuous map f : X → {0, 1} is
constant.

Proof. (⇒) If A and B disconnect X, define

f(x) =

{
0 x ∈ A
1 x ∈ B

Then f−1(∅) = ∅, f−1({0, 1}) = X, f−1({0}) = A and f−1({1}) = B are all
open. So f is continuous. Also, since A,B are non-empty, f is surjective.

(⇐) Given f : X 7→ {0, 1} surjective and continuous, define A = f−1({0}),
B = f−1({1}). Then A and B disconnect X.

Theorem. [0, 1] is connected.

Proof. Suppose A and B disconnect [0, 1]. wlog, assume 1 ∈ B. Since A is
non-empty, α = supA exists. Then either

– α ∈ A. Then α < 1, since 1 ∈ B. Since A is open, ∃ε > 0 with Bε(α) ⊆ A.
So α+ ε

2 ∈ A, contradicting supremality of α; or

– α 6∈ A. Then α ∈ B. Since B is open, ∃ε > 0 such that Bε(α) ⊆ B. Then
a ≤ α− ε for all a ∈ A. This contradicts α being the least upper bound of
A.

Either option gives a contradiction. So A and B cannot exist and [0, 1] is
connected.

Proposition. If f : X → Y is continuous and X is connected, then im f is also
connected.

Proof. Suppose A and B disconnect im f . We will show that f−1(A) and f−1(B)
disconnect X.

Since A,B ⊆ im f are open, we know that A = im f ∩A′ and B = im f ∩B′
for some A′, B′ open in Y . Then f−1(A) = f−1(A′) and f−1(B) = f−1(B′) are
open in X.

Since A,B are non-empty, f−1(A) and f−1(B) are non-empty. Also, f−1(A)∩
f−1(B) = f−1(A ∩ B) = f−1(∅) = ∅. Finally, A ∪ B = im f . So f−1(A) ∪
f−1(B) = f−1(A ∪B) = X.

So f−1(A) and f−1(B) disconnect X, contradicting our hypothesis. So im f
is connected.

Theorem (Intermediate value theorem). Suppose f : X → R is continuous
and X is connected. If ∃x0, x1 such that f(x0) < 0 < f(x1), then ∃x ∈ X with
f(x) = 0.

Proof. Suppose no such x exists. Then 0 6∈ im f while 0 > f(x0) ∈ im f ,
0 < f(x1) ∈ im f . Then im f is disconnected (from our previous example),
contradicting X being connected.
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Corollary. If f : [0, 1]→ R is continuous with f(0) < 0 < f(1), then ∃x ∈ [0, 1]
with f(x) = 0.

3.2 Path connectivity

Proposition. If X is path connected, then X is connected.

Proof. Let X be path connected, and let f : X → {0, 1} be a continuous function.
We want to show that f is constant.

Let x, y ∈ X. By path connectedness, there is a map γ : [0, 1]→ X such that
γ(0) = x and γ(1) = y. Composing with f gives a map f ◦ γ : [0, 1] → {0, 1}.
Since [0, 1] is connected, this must be constant. In particular, f(γ(0)) = f(γ(1)),
i.e. f(x) = f(y). Since x, y were arbitrary, we know f is constant.

Lemma. Suppose f : X → Y is a homeomorphism and A ⊆ X, then f |A : A→
f(A) is a homeomorphism.

Proof. Since f is a bijection, f |A is a bijection. If U ⊆ f(A) is open, then
U = f(A) ∩ U ′ for some U ′ open in Y . So f |−1A (U) = f−1(U ′) ∩A is open in A.
So f |A is continuous. Similarly, we can show that (f |A)−1 is continuous.

3.2.1 Higher connectivity*

3.3 Components

3.3.1 Path components

Lemma. Define x ∼ y if there is a path from x to y in X. Then ∼ is an
equivalence relation.

Proof.

(i) For any x ∈ X, let γx : [0, 1]→ X be γ(t) = x, the constant path. Then
this is a path from x to x. So x ∼ x.

(ii) If γ : [0, 1]→ X is a path from x to y, then γ̄ : [0, 1]→ X by t 7→ γ(1− t)
is a path from y to x. So x ∼ y ⇒ y ∼ x.

(iii) If γ1 is a path from x to y and γ2 is a path from y to z, then γ2 ∗γ1 defined
by

t 7→

{
γ1(2t) t ∈ [0, 1/2]

γ2(2t− 1) t ∈ [1/2, 1]

is a path from x to z. So x ∼ y, y ∼ z ⇒ x ∼ z.

3.3.2 Connected components

Proposition. Suppose Yα ⊆ X is connected for all α ∈ T and that
⋂
α∈T Yα 6= ∅.

Then Y =
⋃
α∈T Yα is connected.

Proof. Suppose the contrary that A and B disconnect Y . Then A and B are
open in Y . So A = Y ∩ A′ and B = Y ∩ B′, where A′, B′ are open in X. For
any fixed α, let

Aα = Yα ∩A = Yα ∩A′, Bα = Yα ∩B = Yα ∩B′.

12
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Then they are open in Yα. Since Y = A ∪B, we have

Yα = Y ∩ Yα = (A ∪B) ∩ Yα = Aα ∪Bα.

Since A ∩B = ∅, we have

Aα ∩Bα = Yα ∩ (A ∩B) = ∅.

So Aα, Bα are disjoint. So Yα is connected but is the disjoint union of open
subsets Aα, Bα.

By definition of connectivity, this can only happen if Aα = ∅ or Bα = ∅.
However, by assumption,

⋂
α∈T

Yα 6= ∅. So pick y ∈
⋂
α∈T

Yα. Since y ∈ Y ,

either y ∈ A or y ∈ B. wlog, assume y ∈ A. Then y ∈ Yα for all α implies that
y ∈ Aα for all α. So Aα is non-empty for all α. So Bα is empty for all α. So
B = ∅.

So A and B did not disconnect Y after all. Contradiction.

Lemma. If y ∈ C(x), then C(y) = C(x).

Proof. Since y ∈ C(x) and C(x) is connected, C(x) ⊆ C(y). So x ∈ C(y). Then
C(y) ⊆ C(x). So C(x) = C(y).

Proposition. If U ⊆ Rn is open and connected, then it is path-connected.

Proof. Let A be a path component of U . We first show that A is open.
Let a ∈ A. Since U is open, ∃ε > 0 such that Bε(a) ⊆ U . We know that

Bε(a) ' Int(Dn) is path-connected (e.g. use line segments connecting the points).
Since A is a path component and a ∈ A, we must have Bε(a) ⊆ A. So A is an
open subset of U .

Now suppose b ∈ U \A. Then since U is open, ∃ε > 0 such that Bε(b) ⊆ U .
Since Bε(b) is path-connected, so if Bε(b) ∩ A 6= ∅, then Bε(b) ⊆ A. But this
implies b ∈ A, which is a contradiction. So Bε(b) ∩ A = ∅. So Bε(b) ⊆ U \ A.
Then U \A is open.

So A,U \ A are disjoint open subsets of U . Since U is connected, we must
have U \A empty (since A is not). So U = A is path-connected.

13
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4 Compactness

4.1 Compactness

Theorem. [0, 1] is compact.

Proof. Suppose V is an open cover of [0, 1]. Let

A = {a ∈ [0, 1] : [0, a] has a finite subcover of V}.

First show that A is non-empty. Since V covers [0, 1], in particular, there is some
V0 that contains 0. So {0} has a finite subcover V0. So 0 ∈ A.

Next we note that by definition, if 0 ≤ b ≤ a and a ∈ A, then b ∈ A.
Now let α = supA. Suppose α < 1. Then α ∈ [0, 1].
Since V covers X, let α ∈ Vα. Since Vα is open, there is some ε such that

Bε(α) ⊆ Vα. By definition of α, we must have α − ε/2 ∈ A. So [0, α − ε/2]
has a finite subcover. Add Vα to that subcover to get a finite subcover of
[0, α+ ε/2]. Contradiction (technically, it will be a finite subcover of [0, η] for
η = min(α+ ε/2, 1), in case α+ ε/2 gets too large).

So we must have α = supA = 1.
Now we argue as before: ∃V1 ∈ V such that 1 ∈ V1 and ∃ε > 0 with

(1 − ε, 1] ⊆ V1. Since 1 − ε ∈ A, there exists a finite V ′ ⊆ V which covers
[0, 1− ε/2]. Then W = V ′ ∪ {V1} is a finite subcover of V.

Proposition. If X is compact and C is a closed subset of X, then C is also
compact.

Proof. To prove this, given an open cover of C, we need to find a finite subcover.
To do so, we need to first convert it into an open cover of X. We can do so by
adding X \C, which is open since C is closed. Then since X is compact, we can
find a finite subcover of this, which we can convert back to a finite subcover of
C.

Formally, suppose V is an open cover of C. Say V = {Vα : α ∈ T}. For
each α, since Vα is open in C, Vα = C ∩ V ′α for some V ′α open in X. Also, since⋃
α∈T Va = C, we have

⋃
α∈T V

′
α ⊇ C.

Since C is closed, U = X \ C is open in X. So W = {V ′α : α ∈ T} ∪ {U}
is an open cover of X. Since X is compact, W has a finite subcover W ′ =
{V ′α1

, · · · , V ′αn
, U} (U may or may not be in there, but it doesn’t matter). Now

U ∩ C = ∅. So {Vα1
, · · · , Vαn

} is a finite subcover of C.

Proposition. Let X be a Hausdorff space. If C ⊆ X is compact, then C is
closed in X.

Proof. Let U = X \ C. We will show that U is open.
For any x, we will find a Ux such that Ux ⊆ U and x ∈ Ux. Then U =⋃

x∈U Ux will be open since it is a union of open sets.
To construct Ux, fix x ∈ U . Since X is Hausdorff, for each y ∈ C, ∃Uxy,Wxy

open neighbourhoods of x and y respectively with Uxy ∩Wxy = ∅.

14



4 Compactness IB Metric and Topological Spaces (Theorems with proof)

Wxy UxyC

xy

Then W = {Wxy ∩ C : y ∈ C} is an open cover of C. Since C is compact, there
exists a finite subcover W ′ = {Wxy1 ∩ C, · · · ,Wxyn ∩ C}.

Let Ux =
⋂n
i=1 Uxyi . Then Ux is open since it is a finite intersection of open

sets. To show Ux ⊆ U , note that Wx =
⋃n
i=1Wxyi ⊇ C since {Wxyi ∩ C} is an

open cover. We also have Wx ∩ Ux = ∅. So Ux ⊆ U . So done.

Wx

Ux
C

x

Proposition. A compact metric space (X, d) is bounded.

Proof. Pick x ∈ X. Then V = {Br(x) : r ∈ R+} is an open cover of X. Since
X is compact, there is a finite subcover {Br1(x), · · · , Brn(x)}.

Let R = max{r1, · · · , rn}. Then d(x, y) < R for all y ∈ X. So for all
y, z ∈ X,

d(y, z) ≤ d(y, x) + d(x, z) < 2R

So X is bounded.

Theorem (Heine-Borel). C ⊆ R is compact iff C is closed and bounded.

Proof. Since R is a metric space (hence Hausdorff), C is also a metric space.
So if C is compact, C is closed in R, and C is bounded, by our previous two

propositions.
Conversely, if C is closed and bounded, then C ⊆ [−N,N ] for some N ∈ R.

Since [−N,N ] ' [0, 1] is compact, and C = C ∩ [−N,N ] is closed in [−N,N ], C
is compact.

Corollary. If A ⊆ R is compact, ∃α ∈ A such that α ≥ a for all a ∈ A.

Proof. Since A is compact, it is bounded. Let α = supA. Then by definition,
α ≥ a for all a ∈ A. So it is enough to show that α ∈ A.

Suppose α 6∈ A. Then α ∈ R \ A. Since A is compact, it is closed in R. So
R \A is open. So ∃ε > 0 such that Bε(α) ⊆ R \A, which implies that a ≤ α− ε
for all a ∈ A. This contradicts the assumption that α = supA. So we can
conclude α ∈ A.

Proposition. If f : X → Y is continuous and X is compact, then im f ⊆ Y is
also compact.

15
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Proof. Suppose V = {Vα : α ∈ T} is an open cover of im f . Since Vα is open in
im f , we have Vα = im f ∩ V ′α, where V ′α is open in Y . Then

Wα = f−1(Vα) = f−1(V ′α)

is open in X. If x ∈ X then f(x) is in Vα for some α, so x ∈ Wα. Thus
W = {Wα : α ∈ T} is an open cover of X.

Since X is compact, there’s a finite subcover {Wα1 , · · · ,Wαn} of W.
Since Vα ⊆ im f , f(Wα) = f(f−1(Vα)) = Vα. So

{Vα1
, · · · , Vαn

}

is a finite subcover of V.

Theorem (Maximum value theorem). If f : X → R is continuous and X is
compact, then ∃x ∈ X such that f(x) ≥ f(y) for all y ∈ X.

Proof. Since X is compact, im f is compact. Let α = max{im f}. Then α ∈ im f .
So ∃x ∈ X with f(x) = α. Then by definition f(x) ≥ f(y) for all y ∈ X.

Corollary. If f : [0, 1]→ R is continuous, then ∃x ∈ [0, 1] such that f(x) ≥ f(y)
for all y ∈ [0, 1]

Proof. [0, 1] is compact.

4.2 Products and quotients

4.2.1 Products

Theorem. If X and Y are compact, then so is X × Y .

Proof. First consider the special type of open cover V of X × Y such that every
U ∈ V has the form U = V ×W , where V ⊆ X and W ⊆ Y are open.

For every (x, y) ∈ X × Y , there is Uxy ∈ V with (x, y) ∈ Uxy. Write

Uxy = Vxy ×Wxy,

where Vxy ⊆ X, Wxy ⊆ Y are open, x ∈ Vxy, y ∈Wxy.
Fix x ∈ X. Then Wx = {Wxy : y ∈ Y } is an open cover of Y . Since Y is

compact, there is a finite subcover {Wxy1 , · · · ,Wxyn}.
Then Vx =

⋂n
i=1 Vxyi is a finite intersection of open sets. So Vx is open in X.

Moreover, Vx = {Uxy1 , · · · , Uxyn} covers Vx × Y .

x

Uxyi

Vx × Y

X

Y
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Now O = {Vx : x ∈ X} is an open cover of X. Since X is compact, there is
a finite subcover {Vx1

, · · · , Vxm
}. Then V ′ =

⋃m
i=1 Vxi

is a finite subset of V,
which covers all of X × Y .

In the general, case, suppose V is an open cover of X × Y . For each (x, y) ∈
X × Y , ∃Uxy ∈ V with (x, y) ∈ Uxy. Since Uxy is open, ∃Vxy ⊆ X,Wxy ⊆ Y
open with Vxy ×Wxy ⊆ Uxy and x ∈ Vxy, y ∈Wxy.

Then Q = {Vxy × Wxy : (x, y) ∈ (X,Y )} is an open cover of X × Y of
the type we already considered above. So it has a finite subcover {Vx1y1 ×
Wx1y1 , · · · , Vxnyn ×Wxnyn}. Now Vxiyi ×Wxiyi ⊆ Uxiyi . So {Ux1y1 , · · · , Uxnyn}
is a finite subcover of X × Y .

Corollary (Heine-Borel in Rn). C ⊆ Rn is compact iff C is closed and bounded.

Proof. If C is bounded, C ⊆ [−N,N ]n for some N ∈ R, which is compact. The
rest of the proof is exactly the same as for n = 1.

4.2.2 Quotients

Proposition. Suppose f : X → Y is a continuous bijection. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We show that f−1 is continuous. To do this, it suffices to show (f−1)−1(C)
is closed in Y whenever C is closed in X. By hypothesis, f is a bijection . So
(f−1)−1(C) = f(C).

Supposed C is closed in X. Since X is compact, C is compact. Since f is
continuous, f(C) = (im f |C) is compact. Since Y is Hausdorff and f(C) ⊆ Y is
compact, f(C) is closed.

Corollary. Suppose f : X/∼ → Y is a bijection, X is compact, Y is Hausdorff,
and f ◦ π is continuous, then f is a homeomorphism.

Proof. Since X is compact and π : X 7→ X/∼ is continuous, imπ ⊆ X/∼ is
compact. Since f ◦ π is continuous, f is continuous. So we can apply the
proposition.

4.3 Sequential compactness

Lemma. Let (xn) be a sequence in a metric space (X, d) and x ∈ X. Then (xn)
has a subsequence converging to x iff for every ε > 0, xn ∈ Bε(x) for infinitely
many n (∗).

Proof. If (xni
) → x, then for every ε, we can find I such that i > I implies

xni ∈ Bε(x) by definition of convergence. So (∗) holds.
Now suppose (∗) holds. We will construct a sequence xni → x inductively.

Take n0 = 0. Suppose we have defined xn0
, · · · , xni−1

.
By hypothesis, xn ∈ B1/i(x) for infinitely many n. Take ni to be smallest

such n with ni > ni−1.
Then d(xni

, x) < 1
i implies that xni

→ x.

Theorem. If (X, d) is a compact metric space, then X is sequentially compact.
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Proof. Suppose xn is a sequence in X with no convergent subsequence. Then
for any y ∈ X, there is no subsequence converging to y. By lemma, there exists
ε > 0 such that xn ∈ Bε(y) for only finitely many n.

Let Uy = Bε(y). Now V = {Uy : y ∈ X} is an open cover of X. Since X is
compact, there is a finite subcover {Uy1 , · · · , Uym}. Then xn ∈

⋃m
i=1 Uyi = X

for only finitely many n. This is nonsense, since xn ∈ X for all n!
So xn must have a convergent subsequence.

4.4 Completeness

Proposition. If X is a compact metric space, then X is complete.

Proof. Let xn be a Cauchy sequence in X. Since X is sequentially compact,
there is a convergent subsequence xni

→ x. We will show that xn → x.
Given ε > 0, pick N such that d(xn, xm) < ε/2 for n,m ≥ N . Pick

I such that nI ≥ N and d(xni , x) < ε/2 for all i > I. Then for n ≥ nI ,
d(xn, x) ≤ d(xn, xnI

) + d(xnI
, x) < ε. So xn → x.

Corollary. Rn is complete.

Proof. If (xn) ⊆ Rn is Cauchy, then (xn) ⊆ B̄R(0) for some R, and B̄R(0) is
compact. So it converges.
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