Metric and Topological Spaces

EXAMPLE SHEET 1

- 1. Show that the sequence 2015, 20015, 200015, 2000015... converges in the 2-adic metric on \mathbb{Z} .
- 2. Determine whether the following subsets $A \subset \mathbb{R}^2$ are open, closed, or neither:

(a)
$$A = \{(x, y) \mid x < 0\} \cup \{(x, y) \mid x > 0, y > 1/x\}$$

- (b) $A = \{(x, \sin(1/x) | x > 0\} \cup \{(0, y) | y \in [-1, 1]\}$
- (c) $A = \{(x, y) | x \in \mathbb{Q}, x = y^n \text{ for some positive integer } n\}.$
- 3. Show that the maps $f, g : \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = x + y and f(x, y) = xy are continuous with respect to the usual topology on \mathbb{R} . Let X be \mathbb{R} equipped with the topology whose open sets are intervals of the form (a, ∞) . Are the maps $f, g : X \times X \to X$ continuous?
- 4. Let $\mathbf{C}^1[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is differentiable and } f' \text{ is continuous}\}$. For $f \in \mathbf{C}^1[0,1]$, define

$$||f||_{1,1} = \int_0^1 (|f(x)| + |f'(x)|) \, dx.$$

Show that $\|\cdot\|_{1,1}$ defines a norm on $\mathbb{C}^1[0,1]$. If a sequence (f_n) converges with respect to this norm, show that it also converges with respect to the uniform norm. Give an example to show that the converse statement does not hold.

- 5. Let $d: X \times X \to \mathbb{R}$ be a function which satisfies all the axioms for a metric space except for the requirement that $d(x, y) = 0 \Leftrightarrow x = y$. For $x, y \in X$, define $x \sim y$ if d(x, y) = 0. Show that \sim is an equivalence relation on X, and that d induces a metric on the quotient X/\sim .
- 6. Find a closed $A_1 \subset \mathbb{R}$ (with the usual topology) so that $\operatorname{Int}(A_1) \neq A_1$ and an open $A_2 \subset \mathbb{R}$ so that $\operatorname{Int}(\overline{A_2}) \neq A_2$.
- 7. Let $f: X \to Y$ be a map of topological spaces. Show that f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$. Deduce that if f is surjective and continuous, the image of a dense set in X is dense in Y.
- 8. Suppose X is a topological space and $Z \subset Y \subset X$. If Y is dense in X and Z is dense in Y (with the subspace topology), must Z be dense in X?

- 9. Define a topology on \mathbb{R} by declaring the closed subsets to be those which are i) closed in the usual topology and ii) either bounded or all of \mathbb{R} . Show that this is a topology, that all points of \mathbb{R} are closed with respect to it, but that the topology is not Hausdorff.
- 10. The diagonal in $X \times X$ is the set $\Delta_X = \{(x, x) \mid x \in X\}$. If X is a Hausdorff topological space, show that Δ_X is a closed subset of $X \times X$.
- 11. Exhibit a countable basis for the usual topology on \mathbb{R} .
- 12. Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the 2-dimensional torus. Let $L \subset \mathbb{R}^2$ be a line of the form $y = \alpha x$, where α is irrational, and let $\pi(L)$ be its image in T^2 . What are the closure and interior of $\pi(L)$?
- 13. Let $A = \{(0, 0, 1), (0, 0, -1)\} \subset S^2$. Let $B \subset T^2$ be the image of $\mathbb{R} \times 0 \subset \mathbb{R}^2$, where we view $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. Show that the quotient spaces S^2/A and T^2/B are homeomorphic.
- 14. Let $\|\cdot\| : \mathbb{R}^2 \to \mathbb{R}$ be a function which satisfies all the axioms for a norm except possibly the triangle inequality. Let $B = \{\mathbf{v} \in \mathbb{R}^2 \mid \|\mathbf{v}\| \le 1\}$. Show that $\|\cdot\|$ is a norm if and only if B is a convex subset of \mathbb{R}^2 . (That is, if $\mathbf{v}_1, \mathbf{v}_2 \in B$, then $t\mathbf{v}_1 + (1-t)\mathbf{v}_2 \in B$ for $t \in [0, 1]$.) For $r \in (0, \infty)$, let $\|\mathbf{v}\|_r = (|v_1|^r + |v_2|^r)^{1/r}$. Use calculus to sketch B for different values of r. Deduce that $\|\cdot\|_r$ is a norm for $1 \le r < \infty$, but not for 0 < r < 1.
- 15. Let D^2 be the closed unit disk in \mathbb{R}^2 , and let X be the complement of two disjoint open disks in D^2 . Let Y be the complement of a small open disk in T^2 (viewed as $\mathbb{R}^2/\mathbb{Z}^2$). Is X homeomorphic to Y? Is $X \times [0,1]$ homeomorphic to $Y \times [0,1]$? (No formal proof is required, but try to give some geometric justification.)
- 16. Show that the set of piecewise linear functions is dense in $\mathbb{C}[0,1]$ with the uniform metric. By considering piecewise linear functions where each linear piece is given by an expression with rational coefficients, deduce that $\mathbb{C}[0,1]$ has a countable dense subset.

J.Rasmussen@dpmms.cam.ac.uk

Metric and Topological Spaces

EXAMPLE SHEET 2

- 1. Which of the following subsets of \mathbb{R}^2 are a) connected b) path connected?
 - (a) $B_1((1,0)) \cup B_1((-1,0))$
 - (b) $\overline{B}_1((1,0)) \cup B_1((-1,0))$
 - (c) $\{(x, y) \mid y = 0 \text{ or } x/y \in \mathbb{Q}\}$
 - (d) $\{(x, y) | y = 0 \text{ or } x/y \in \mathbb{Q}\} \{(0, 0)\}$
- 2. Suppose that X is connected, and that $f : X \to Y$ is a locally constant map; *i.e.* for every $x \in X$, there is an open neighborhood U of x such that f(y) = f(x) for all $y \in U$. Show that f is constant.
- 3. Show that the product of two connected spaces is connected.
- 4. Show there is no continuous injective map $f : \mathbb{R}^2 \to \mathbb{R}$.
- 5. Show that \mathbb{R}^2 with the topology induced by the British rail metric is not homeomorphic to \mathbb{R}^2 with the topology induced by the Euclidean metric.
- 6. Let X be a topological space. If A is a connected subspace of X, show that \overline{A} is also connected. Deduce that any component of X is a closed subset of X.
- 7. (a) If $f : [0,1] \to [0,1]$ is continuous, show there is some $x \in [0,1]$ with f(x) = x.
 - (b) Suppose $f : [0,1] \to \mathbb{R}$ is continuous and has f(0) = f(1). For each integer n > 1, show that there is some $x \in [0,1]$ with $f(x) = f(x + \frac{1}{n})$.
- 8. A standard chair (four legs, feet are the vertices of a square) is placed on an uneven floor (modeled by the graph of a continuous function z = g(x, y).) By rotating the chair about its center, show that it is always possible to find a position where all four feet are on the floor.
- 9. Is there an infinite compact subset of \mathbb{Q} ?
- 10. If $A \subset \mathbb{R}^n$ is not compact, show there is a continuous function $f : A \to \mathbb{R}$ which is not bounded.
- 11. If X is a topological space, its one point compactification X^+ is defined as follows. As a set, X^+ is the union of X with an additional point ∞ . A subset $U \subset X^+$ is open if either

(a) $\infty \notin U$ and U is an open subset of X

(b) $\infty \in U$ and $X^+ - U$ is a compact, closed subset of X.

Show that X^+ is a compact topological space. If $X = \mathbb{R}^n$, show that $X^+ \simeq S^n$.

- 12. Suppose that X is a compact Hausdorff space, and that C_1 and C_2 are disjoint closed subsets of X. Show that there exist open subsets $U_1, U_2 \subset X$ such that $C_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$.
- 13. Let (X, d) be a metric space. A complete metric space (X', d') is said to be a *completion* of (X, d) if a) $X \subset X'$ and $d'|_{X \times X} = d$ and b) X is dense in X'.
 - (a) Suppose that (Y, d_Y) is a complete metric space and that $f : X \to Y$ is an *isometric embedding*, *i.e.* $d_Y(f(x_1), f(x_2)) = d(x_1, x_2)$. Show that fextends to an isometric embedding $f' : X' \to Y$.
 - (b) Deduce that any two completions of X are *isometric*, *i.e.* related by an bijective isometric embedding.
- 14. If p is a prime number, let \mathbb{Z}_p be the space of sequences $(x_n)_{n\geq 0}$ in $\mathbb{Z}/p\mathbb{Z}$, equipped with the metric $d((x_n), (y_n)) = p^{-k}$, where k is the smallest value of n such that $x_n \neq y_n$.
 - (a) Find an isometric embedding of $f : (\mathbb{Z}, d_p) \to \mathbb{Z}_p$, where d_p is the *p*-adic metric. Show that \mathbb{Z}_p is a completion of the image of f. The set \mathbb{Z}_p is called the *p*-adic numbers.
 - (b) Show that \mathbb{Z}_p is compact and totally disconnected.
 - (c) Show that the maps $f, g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by f(x, y) = x + y, g(x, y) = xy extend to continuous maps $f', g': \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$.
 - (d) Let a be an integer which is relatively prime to p and assume p > 2. Show that the equation $x^2 = a$ has a solution in \mathbb{Z}_p if and only if it has a solution in $\mathbb{Z}/p\mathbb{Z}$.
- 15. Show that C[0,1] equipped with the uniform metric is complete.
- 16. Define a norm $\|\cdot\|_{\infty,\infty}$ on $C^1[0,1]$ by $\|f\|_{\infty,\infty} = \max\{\|f\|_{\infty}, \|f'\|_{\infty}\}$. Let $B = \overline{B}_1(0)$ be the closed unit ball in this norm. Show that any sequence (f_n) in B has a subsequence which converges with respect to the uniform norm. (Hint: first find a subsequence (f_{n_i}) such that $f_{n_i}(x)$ converges for all $x \in \mathbb{Q} \cap [0,1]$.) Deduce that the closure of B in $(C[0,1], d_{\infty})$ is compact.

J.Rasmussen@dpmms.cam.ac.uk