
Part IA — Probability

Theorems with proof

Based on lectures by R. Weber
Notes taken by Dexter Chua

Lent 2015

These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what

was actually lectured, and in particular, all errors are almost surely mine.

Basic concepts
Classical probability, equally likely outcomes. Combinatorial analysis, permutations
and combinations. Stirling’s formula (asymptotics for logn! proved). [3]

Axiomatic approach
Axioms (countable case). Probability spaces. Inclusion-exclusion formula. Continuity
and subadditivity of probability measures. Independence. Binomial, Poisson and geo-
metric distributions. Relation between Poisson and binomial distributions. Conditional
probability, Bayes’s formula. Examples, including Simpson’s paradox. [5]

Discrete random variables
Expectation. Functions of a random variable, indicator function, variance, standard
deviation. Covariance, independence of random variables. Generating functions: sums
of independent random variables, random sum formula, moments.

Conditional expectation. Random walks: gambler’s ruin, recurrence relations. Dif-
ference equations and their solution. Mean time to absorption. Branching processes:
generating functions and extinction probability. Combinatorial applications of generat-
ing functions. [7]

Continuous random variables
Distributions and density functions. Expectations; expectation of a function of a
random variable. Uniform, normal and exponential random variables. Memoryless
property of exponential distribution. Joint distributions: transformation of random
variables (including Jacobians), examples. Simulation: generating continuous random
variables, independent normal random variables. Geometrical probability: Bertrand’s
paradox, Buffon’s needle. Correlation coefficient, bivariate normal random variables. [6]

Inequalities and limits
Markov’s inequality, Chebyshev’s inequality. Weak law of large numbers. Convexity:
Jensen’s inequality for general random variables, AM/GM inequality.

Moment generating functions and statement (no proof) of continuity theorem. State-

ment of central limit theorem and sketch of proof. Examples, including sampling. [3]
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1 Classical probability IA Probability (Theorems with proof)

1 Classical probability

1.1 Classical probability

1.2 Counting

Theorem (Fundamental rule of counting). Suppose we have to make r multiple
choices in sequence. There are m1 possibilities for the first choice, m2 possibilities
for the second etc. Then the total number of choices is m1 ×m2 × · · ·mr.

1.3 Stirling’s formula

Proposition. log n! ∼ n log n

Proof. Note that

log n! =

n∑
k=1

log k.

Now we claim that∫ n

1

log x dx ≤
n∑
1

log k ≤
∫ n+1

1

log x dx.

This is true by considering the diagram:

x

y

lnx
ln(x− 1)

We actually evaluate the integral to obtain

n log n− n+ 1 ≤ log n! ≤ (n+ 1) log(n+ 1)− n;

Divide both sides by n log n and let n→∞. Both sides tend to 1. So

log n!

n log n
→ 1.

Theorem (Stirling’s formula). As n→∞,

log

(
n!en

nn+
1
2

)
= log

√
2π +O

(
1

n

)
Corollary.

n! ∼
√

2πnn+
1
2 e−n
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1 Classical probability IA Probability (Theorems with proof)

Proof. (non-examinable) Define

dn = log

(
n!en

nn+1/2

)
= log n!− (n+ 1/2) log n+ n

Then

dn − dn+1 = (n+ 1/2) log

(
n+ 1

n

)
− 1.

Write t = 1/(2n+ 1). Then

dn − dn+1 =
1

2t
log

(
1 + t

1− t

)
− 1.

We can simplifying by noting that

log(1 + t)− t = −1

2
t2 +

1

3
t3 − 1

4
t4 + · · ·

log(1− t) + t = −1

2
t2 − 1

3
t3 − 1

4
t4 − · · ·

Then if we subtract the equations and divide by 2t, we obtain

dn − dn+1 =
1

3
t2 +

1

5
t4 +

1

7
t6 + · · ·

<
1

3
t2 +

1

3
t4 +

1

3
t6 + · · ·

=
1

3

t2

1− t2

=
1

3

1

(2n+ 1)2 − 1

=
1

12

(
1

n
− 1

n+ 1

)
By summing these bounds, we know that

d1 − dn <
1

12

(
1− 1

n

)
Then we know that dn is bounded below by d1+ something, and is decreasing
since dn − dn+1 is positive. So it converges to a limit A. We know A is a lower
bound for dn since (dn) is decreasing.

Suppose m > n. Then dn−dm <
(
1
n −

1
m

)
1
12 . So taking the limit as m→∞,

we obtain an upper bound for dn: dn < A+ 1/(12n). Hence we know that

A < dn < A+
1

12n
.

However, all these results are useless if we don’t know what A is. To find A, we
have a small detour to prove a formula:
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1 Classical probability IA Probability (Theorems with proof)

Take In =
∫ π/2
0

sinn θ dθ. This is decreasing for increasing n as sinn θ gets
smaller. We also know that

In =

∫ π/2

0

sinn θ dθ

=
[
− cos θ sinn−1 θ

]π/2
0

+

∫ π/2

0

(n− 1) cos2 θ sinn−2 θ dθ

= 0 +

∫ π/2

0

(n− 1)(1− sin2 θ) sinn−2 θ dθ

= (n− 1)(In−2 − In)

So

In =
n− 1

n
In−2.

We can directly evaluate the integral to obtain I0 = π/2, I1 = 1. Then

I2n =
1

2
· 3

4
· · · 2n− 1

2n
π/2 =

(2n)!

(2nn!)2
π

2

I2n+1 =
2

3
· 4

5
· · · 2n

2n+ 1
=

(2nn!)2

(2n+ 1)!

So using the fact that In is decreasing, we know that

1 ≤ I2n
I2n+1

≤ I2n−1
I2n+1

= 1 +
1

2n
→ 1.

Using the approximation n! ∼ nn+1/2e−n+A, where A is the limit we want to
find, we can approximate

I2n
I2n+1

= π(2n+ 1)

[
((2n)!)2

24n+1(n!)4

]
∼ π(2n+ 1)

1

ne2A
→ 2π

e2A
.

Since the last expression is equal to 1, we know that A = log
√

2π. Hooray for
magic!

Proposition (non-examinable). We use the 1/12n term from the proof above
to get a better approximation:

√
2πnn+1/2e−n+

1
12n+1 ≤ n! ≤

√
2πnn+1/2e−n+

1
12n .
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2 Axioms of probability IA Probability (Theorems with proof)

2 Axioms of probability

2.1 Axioms and definitions

Theorem.

(i) P(∅) = 0

(ii) P(AC) = 1− P(A)

(iii) A ⊆ B ⇒ P(A) ≤ P(B)

(iv) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof.

(i) Ω and ∅ are disjoint. So P(Ω) + P(∅) = P(Ω ∪ ∅) = P(Ω). So P(∅) = 0.

(ii) P(A) + P(AC) = P(Ω) = 1 since A and AC are disjoint.

(iii) Write B = A ∪ (B ∩AC). Then
P (B) = P(A) + P(B ∩AC) ≥ P(A).

(iv) P(A ∪ B) = P(A) + P(B ∩ AC). We also know that P(B) = P(A ∩ B) +
P(B ∩AC). Then the result follows.

Theorem. If A1, A2, · · · is increasing or decreasing, then

lim
n→∞

P(An) = P
(

lim
n→∞

An

)
.

Proof. Take B1 = A1, B2 = A2 \A1. In general,

Bn = An \
n−1⋃
1

Ai.

Then
n⋃
1

Bi =

n⋃
1

Ai,

∞⋃
1

Bi =

∞⋃
1

Ai.

Then

P(limAn) = P

(∞⋃
1

Ai

)

= P

(∞⋃
1

Bi

)

=

∞∑
1

P(Bi) (Axiom III)

= lim
n→∞

n∑
i=1

P(Bi)

= lim
n→∞

P

(
n⋃
1

Ai

)
= lim
n→∞

P(An).

and the decreasing case is proven similarly (or we can simply apply the above to
ACi ).
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2 Axioms of probability IA Probability (Theorems with proof)

2.2 Inequalities and formulae

Theorem (Boole’s inequality). For any A1, A2, · · · ,

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai).

Proof. Our third axiom states a similar formula that only holds for disjoint sets.
So we need a (not so) clever trick to make them disjoint. We define

B1 = A1

B2 = A2 \A1

Bi = Ai \
i−1⋃
k=1

Ak.

So we know that ⋃
Bi =

⋃
Ai.

But the Bi are disjoint. So our Axiom (iii) gives

P

(⋃
i

Ai

)
= P

(⋃
i

Bi

)
=
∑
i

P (Bi) ≤
∑
i

P (Ai) .

Where the last inequality follows from (iii) of the theorem above.

Theorem (Inclusion-exclusion formula).

P

(
n⋃
i

Ai

)
=

n∑
1

P(Ai)−
∑
i1<i2

P(Ai1 ∩Aj2) +
∑

i1<i2<i3

P(Ai1 ∩Ai2 ∩Ai3)− · · ·

+ (−1)n−1P(A1 ∩ · · · ∩An).

Proof. Perform induction on n. n = 2 is proven above.
Then

P(A1 ∪A2 ∪ · · ·An) = P(A1) + P(A2 ∪ · · · ∪An)− P

(
n⋃
i=2

(A1 ∩Ai)

)
.

Then we can apply the induction hypothesis for n − 1, and expand the mess.
The details are very similar to that in IA Numbers and Sets.

Theorem (Bonferroni’s inequalities). For any events A1, A2, · · · , An and 1 ≤
r ≤ n, if r is odd, then

P

(
n⋃
1

Ai

)
≤
∑
i1

P(Ai1)−
∑
i1<i2

P(Ai1Ai2) +
∑

i1<i2<i3

P(Ai1Ai2Ai3) + · · ·

+
∑

i1<i2<···<ir

P(Ai1Ai2Ai3 · · ·Air ).
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2 Axioms of probability IA Probability (Theorems with proof)

If r is even, then

P

(
n⋃
1

Ai

)
≥
∑
i1

P(Ai1)−
∑
i1<i2

P(Ai1Ai2) +
∑

i1<i2<i3

P(Ai1Ai2Ai3) + · · ·

−
∑

i1<i2<···<ir

P(Ai1Ai2Ai3 · · ·Air ).

Proof. Easy induction on n.

2.3 Independence

Proposition. If A and B are independent, then A and BC are independent.

Proof.

P(A ∩BC) = P(A)− P(A ∩B)

= P(A)− P(A)P(B)

= P(A)(1− P(B))

= P(A)P(BC)

2.4 Important discrete distributions

Theorem (Poisson approximation to binomial). Suppose n → ∞ and p → 0
such that np = λ. Then

qk =

(
n

k

)
pk(1− p)n−k → λk

k!
e−λ.

Proof.

qk =

(
n

k

)
pk(1− p)n−k

=
1

k!

n(n− 1) · · · (n− k + 1)

nk
(np)k

(
1− np

n

)n−k
→ 1

k!
λke−λ

since (1− a/n)n → e−a.

2.5 Conditional probability

Theorem.

(i) P(A ∩B) = P(A | B)P(B).

(ii) P(A ∩B ∩ C) = P(A | B ∩ C)P(B | C)P(C).

(iii) P(A | B ∩ C) = P(A∩B|C)
P(B|C) .
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2 Axioms of probability IA Probability (Theorems with proof)

(iv) The function P( · | B) restricted to subsets of B is a probability function
(or measure).

Proof. Proofs of (i), (ii) and (iii) are trivial. So we only prove (iv). To prove
this, we have to check the axioms.

(i) Let A ⊆ B. Then P(A | B) = P(A∩B)
P(B) ≤ 1.

(ii) P(B | B) = P(B)
P(B) = 1.

(iii) Let Ai be disjoint events that are subsets of B. Then

P

(⋃
i

Ai

∣∣∣∣∣B
)

=
P(
⋃
iAi ∩B)

P(B)

=
P (
⋃
iAi)

P(B)

=
∑ P(Ai)

P(B)

=
∑ P(Ai ∩B)

P(B)

=
∑

P(Ai | B).

Proposition. If Bi is a partition of the sample space, and A is any event, then

P(A) =

∞∑
i=1

P(A ∩Bi) =

∞∑
i=1

P(A | Bi)P(Bi).

Theorem (Bayes’ formula). Suppose Bi is a partition of the sample space, and
A and Bi all have non-zero probability. Then for any Bi,

P(Bi | A) =
P(A | Bi)P(Bi)∑
j P(A | Bj)P(Bj)

.

Note that the denominator is simply P(A) written in a fancy way.
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3 Discrete random variables

3.1 Discrete random variables

Theorem.

(i) If X ≥ 0, then E[X] ≥ 0.

(ii) If X ≥ 0 and E[X] = 0, then P(X = 0) = 1.

(iii) If a and b are constants, then E[a+ bX] = a+ bE[X].

(iv) If X and Y are random variables, then E[X + Y ] = E[X] + E[Y ]. This is
true even if X and Y are not independent.

(v) E[X] is a constant that minimizes E[(X − c)2] over c.

Proof.

(i) X ≥ 0 means that X(ω) ≥ 0 for all ω. Then

E[X] =
∑
ω

pωX(ω) ≥ 0.

(ii) If there exists ω such that X(ω) > 0 and pω > 0, then E[X] > 0. So
X(ω) = 0 for all ω.

(iii)

E[a+ bX] =
∑
ω

(a+ bX(ω))pω = a+ b
∑
ω

pω = a+ b E[X].

(iv)

E[X+Y ] =
∑
ω

pω[X(ω)+Y (ω)] =
∑
ω

pωX(ω)+
∑
ω

pωY (ω) = E[X]+E[Y ].

(v)

E[(X − c)2] = E[(X − E[X] + E[X]− c)2]

= E[(X − E[X])2 + 2(E[X]− c)(X − E[X]) + (E[X]− c)2]

= E(X − E[X])2 + 0 + (E[X]− c)2.

This is clearly minimized when c = E[X]. Note that we obtained the zero
in the middle because E[X − E[X]] = E[X]− E[X] = 0.

Theorem. For any random variables X1, X2, · · ·Xn, for which the following
expectations exist,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].

Proof.∑
ω

p(ω)[X1(ω) + · · ·+Xn(ω)] =
∑
ω

p(ω)X1(ω) + · · ·+
∑
ω

p(ω)Xn(ω).
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3 Discrete random variables IA Probability (Theorems with proof)

Theorem.

(i) varX ≥ 0. If varX = 0, then P(X = E[X]) = 1.

(ii) var(a+ bX) = b2 var(X). This can be proved by expanding the definition
and using the linearity of the expected value.

(iii) var(X) = E[X2]− E[X]2, also proven by expanding the definition.

Proposition.

– E[I[A]] =
∑
ω p(ω)I[A](ω) = P(A).

– I[AC ] = 1− I[A].

– I[A ∩B] = I[A]I[B].

– I[A ∪B] = I[A] + I[B]− I[A]I[B].

– I[A]2 = I[A].

Theorem (Inclusion-exclusion formula).

P

(
n⋃
i

Ai

)
=

n∑
1

P(Ai)−
∑
i1<i2

P(Ai1 ∩Aj2) +
∑

i1<i2<i3

P(Ai1 ∩Ai2 ∩Ai3)− · · ·

+ (−1)n−1P(A1 ∩ · · · ∩An).

Proof. Let Ij be the indicator function for Aj . Write

Sr =
∑

i1<i2<···<ir

Ii1Ii2 · · · Iir ,

and
sr = E[Sr] =

∑
i1<···<ir

P(Ai1 ∩ · · · ∩Air ).

Then

1−
n∏
j=1

(1− Ij) = S1 − S2 + S3 · · ·+ (−1)n−1Sn.

So

P

(
n⋃
1

Aj

)
= E

[
1−

n∏
1

(1− Ij)

]
= s1 − s2 + s3 − · · ·+ (−1)n−1sn.

Theorem. If X1, · · · , Xn are independent random variables, and f1, · · · , fn are
functions R→ R, then f1(X1), · · · , fn(Xn) are independent random variables.

Proof. Note that given a particular yi, there can be many different xi for which
fi(xi) = yi. When finding P(fi(xi) = yi), we need to sum over all xi such that
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3 Discrete random variables IA Probability (Theorems with proof)

fi(xi) = fi. Then

P(f1(X1) = y1, · · · fn(Xn) = yn) =
∑

x1:f1(x1)=y1
··

xn:fn(xn)=yn

P(X1 = x1, · · · , Xn = xn)

=
∑

x1:f1(x1)=y1
··

xn:fn(xn)=yn

n∏
i=1

P(Xi = xi)

=

n∏
i=1

∑
xi:fi(xi)=yi

P(Xi = xi)

=

n∏
i=1

P(fi(xi) = yi).

Note that the switch from the second to third line is valid since they both expand
to the same mess.

Theorem. If X1, · · · , Xn are independent random variables and all the following
expectations exists, then

E
[∏

Xi

]
=
∏

E[Xi].

Proof. Write Ri for the range of Xi. Then

E

[
n∏
1

Xi

]
=
∑
x1∈R1

· · ·
∑

xn∈Rn

x1x2 · · ·xn × P(X1 = x1, · · · , Xn = xn)

=

n∏
i=1

∑
xi∈Ri

xiP(Xi = xi)

=

n∏
i=1

E[Xi].

Corollary. Let X1, · · ·Xn be independent random variables, and f1, f2, · · · fn
are functions R→ R. Then

E
[∏

fi(xi)
]

=
∏

E[fi(xi)].

Theorem. If X1, X2, · · ·Xn are independent random variables, then

var
(∑

Xi

)
=
∑

var(Xi).
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3 Discrete random variables IA Probability (Theorems with proof)

Proof.

var
(∑

Xi

)
= E

[(∑
Xi

)2]
−
(
E
[∑

Xi

])2
= E

∑X2
i +

∑
i 6=j

XiXj

− (∑E[Xi]
)2

=
∑

E[X2
i ] +

∑
i 6=j

E[Xi]E[Xj ]−
∑

(E[Xi])
2 −

∑
i 6=j

E[Xi]E[Xj ]

=
∑

E[X2
i ]− (E[Xi])

2.

Corollary. Let X1, X2, · · ·Xn be independent identically distributed random
variables (iid rvs). Then

var

(
1

n

∑
Xi

)
=

1

n
var(X1).

Proof.

var

(
1

n

∑
Xi

)
=

1

n2
var
(∑

Xi

)
=

1

n2

∑
var(Xi)

=
1

n2
n var(X1)

=
1

n
var(X1)

3.2 Inequalities

Proposition. If f is differentiable and f ′′(x) ≥ 0 for all x ∈ (a, b), then it is
convex. It is strictly convex if f ′′(x) > 0.

Theorem (Jensen’s inequality). If f : (a, b)→ R is convex, then

n∑
i=1

pif(xi) ≥ f

(
n∑
i=1

pixi

)

for all p1, p2, · · · , pn such that pi ≥ 0 and
∑
pi = 1, and xi ∈ (a, b).

This says that E[f(X)] ≥ f(E[X]) (where P(X = xi) = pi).
If f is strictly convex, then equalities hold only if all xi are equal, i.e. X

takes only one possible value.
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3 Discrete random variables IA Probability (Theorems with proof)

Proof. Induct on n. It is true for n = 2 by the definition of convexity. Then

f(p1x1 + · · ·+ pnxn) = f

(
p1x1 + (p2 + · · ·+ pn)

p2x2 + · · ·+ lnxn
p2 + · · ·+ pn

)
≤ p1f(x1) + (p2 + · · · pn)f

(
p2x2 + · · ·+ pnxn
p2 + · · ·+ pn

)
.

≤ p1f(x1) + (p2 + · · ·+ pn)

[
p2
( )
f(x2) + · · ·+ pn

( )
f(xn)

]
= p1f(x1) + · · ·+ pn(xn).

where the ( ) is p2 + · · ·+ pn.
Strictly convex case is proved with ≤ replaced by < by definition of strict

convexity.

Corollary (AM-GM inequality). Given x1, · · · , xn positive reals, then(∏
xi

)1/n
≤ 1

n

∑
xi.

Proof. Take f(x) = − log x. This is concave since its second derivative is
x−2 > 0.

Take P(x = xi) = 1/n. Then

E[f(x)] =
1

n

∑
− log xi = − log GM

and

f(E[x]) = − log
1

n

∑
xi = − log AM

Since f(E[x]) ≤ E[f(x)], AM ≥ GM. Since − log x is strictly convex, AM = GM
only if all xi are equal.

Theorem (Cauchy-Schwarz inequality). For any two random variables X,Y ,

(E[XY ])2 ≤ E[X2]E[Y 2].

Proof. If Y = 0, then both sides are 0. Otherwise, E[Y 2] > 0. Let

w = X − Y · E[XY ]

E[Y 2]
.

Then

E[w2] = E
[
X2 − 2XY

E[XY ]

E[Y 2]
+ Y 2 (E[XY ])2

(E[Y 2])2

]
= E[X2]− 2

(E[XY ])2

E[Y 2]
+

(E[XY ])2

E[Y 2]

= E[X2]− (E[XY ])2

E[Y 2]

Since E[w2] ≥ 0, the Cauchy-Schwarz inequality follows.
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Theorem (Markov inequality). If X is a random variable with E|X| <∞ and
ε > 0, then

P(|X| ≥ ε) ≤ E|X|
ε

.

Proof. We make use of the indicator function. We have

I[|X| ≥ ε] ≤ |X|
ε
.

This is proved by exhaustion: if |X| ≥ ε, then LHS = 1 and RHS ≥ 1; If |X| < ε,
then LHS = 0 and RHS is non-negative.

Take the expected value to obtain

P(|X| ≥ ε) ≤ E|X|
ε

.

Theorem (Chebyshev inequality). If X is a random variable with E[X2] <∞
and ε > 0, then

P(|X| ≥ ε) ≤ E[X2]

ε2
.

Proof. Again, we have

I[{|X| ≥ ε}] ≤ x2

ε2
.

Then take the expected value and the result follows.

3.3 Weak law of large numbers

Theorem (Weak law of large numbers). Let X1, X2, · · · be iid random variables,
with mean µ and varσ2.

Let Sn =
∑n
i=1Xi.

Then for all ε > 0,

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε)→ 0

as n→∞.
We say, Sn

n tends to µ (in probability), or

Sn
n
→p µ.

Proof. By Chebyshev,

P
(∣∣∣∣Snn − µ

∣∣∣∣ ≥ ε) ≤ E
(
Sn
n − µ

)2
ε2

=
1

n2
E(Sn − nµ)2

ε2

=
1

n2ε2
var(Sn)

=
n

n2ε2
var(X1)

=
σ2

nε2
→ 0

16



3 Discrete random variables IA Probability (Theorems with proof)

Theorem (Strong law of large numbers).

P
(
Sn
n
→ µ as n→∞

)
= 1.

We say
Sn
n
→as µ,

where “as” means “almost surely”.

3.4 Multiple random variables

Proposition.

(i) cov(X, c) = 0 for constant c.

(ii) cov(X + c, Y ) = cov(X,Y ).

(iii) cov(X,Y ) = cov(Y,X).

(iv) cov(X,Y ) = E[XY ]− E[X]E[Y ].

(v) cov(X,X) = var(X).

(vi) var(X + Y ) = var(X) + var(Y ) + 2 cov(X,Y ).

(vii) If X, Y are independent, cov(X,Y ) = 0.

Proposition. | corr(X,Y )| ≤ 1.

Proof. Apply Cauchy-Schwarz to X − E[X] and Y − E[Y ].

Theorem. If X and Y are independent, then

E[X | Y ] = E[X]

Proof.

E[X | Y = y] =
∑
x

xP(X = x | Y = y)

=
∑
x

xP(X = x)

= E[X]

Theorem (Tower property of conditional expectation).

EY [EX [X | Y ]] = EX [X],

where the subscripts indicate what variable the expectation is taken over.

17



3 Discrete random variables IA Probability (Theorems with proof)

Proof.

EY [EX [X | Y ]] =
∑
y

P(Y = y)E[X | Y = y]

=
∑
y

P(Y = y)
∑
x

xP(X = x | Y = y)

=
∑
x

∑
y

xP(X = x, Y = y)

=
∑
x

x
∑
y

P(X = x, Y = y)

=
∑
x

xP(X = x)

= E[X].

3.5 Probability generating functions

Theorem. The distribution of X is uniquely determined by its probability
generating function.

Proof. By definition, p0 = p(0), p1 = p′(0) etc. (where p′ is the derivative of p).
In general,

di

dzi
p(z)

∣∣∣∣
z=0

= i!pi.

So we can recover (p0, p1, · · · ) from p(z).

Theorem (Abel’s lemma).

E[X] = lim
z→1

p′(z).

If p′(z) is continuous, then simply E[X] = p′(1).

Proof. For z < 1, we have

p′(z) =

∞∑
1

rprz
r−1 ≤

∞∑
1

rpr = E[X].

So we must have
lim
z→1

p′(z) ≤ E[X].

On the other hand, for any ε, if we pick N large, then

N∑
1

rpr ≥ E[X]− ε.

So

E[X]− ε ≤
N∑
1

rpr = lim
z→1

N∑
1

rprz
r−1 ≤ lim

z→1

∞∑
1

rprz
r−1 = lim

z→1
p′(z).

So E[X] ≤ lim
z→1

p′(z). So the result follows

18
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Theorem.
E[X(X − 1)] = lim

z→1
p′′(z).

Proof. Same as above.

Theorem. Suppose X1, X2, · · · , Xn are independent random variables with pgfs
p1, p2, · · · , pn. Then the pgf of X1 +X2 + · · ·+Xn is p1(z)p2(z) · · · pn(z).

Proof.

E[zX1+···+Xn ] = E[zX1 · · · zXn ] = E[zX1 ] · · ·E[zXn ] = p1(z) · · · pn(z).

19



4 Interesting problems IA Probability (Theorems with proof)

4 Interesting problems

4.1 Branching processes

Theorem.

Fn+1(z) = Fn(F (z)) = F (F (F (· · ·F (z) · · · )))) = F (Fn(z)).

Proof.

Fn+1(z) = E[zXn+1 ]

= E[E[zXn+1 | Xn]]

=

∞∑
k=0

P(Xn = k)E[zXn+1 | Xn = k]

=

∞∑
k=0

P(Xn = k)E[zY
n
1 +···+Y nk | Xn = k]

=

∞∑
k=0

P(Xn = k)E[zY1 ]E[zY2 ] · · ·E[zYn ]

=

∞∑
k=0

P(Xn = k)(E[zX1 ])k

=
∑
k=0

P(Xn = k)F (z)k

= Fn(F (z))

Theorem. Suppose

E[X1] =
∑

kpk = µ

and
var(X1) = E[(X − µ)2] =

∑
(k − µ)2pk <∞.

Then
E[Xn] = µn, varXn = σ2µn−1(1 + µ+ µ2 + · · ·+ µn−1).

Proof.

E[Xn] = E[E[Xn | Xn−1]]

= E[µXn−1]

= µE[Xn−1]

Then by induction, E[Xn] = µn (since X0 = 1).
To calculate the variance, note that

var(Xn) = E[X2
n]− (E[Xn])2

and hence
E[X2

n] = var(Xn) + (E[X])2

20
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We then calculate

E[X2
n] = E[E[X2

n | Xn−1]]

= E[var(Xn) + (E[Xn])2 | Xn−1]

= E[Xn−1 var(X1) + (µXn−1)2]

= E[Xn−1σ
2 + (µXn−1)2]

= σ2µn−1 + µ2E[X2
n−1].

So

varXn = E[X2
n]− (E[Xn])2

= µ2E[X2
n−1] + σ2µn−1 − µ2(E[Xn−1])2

= µ2(E[X2
n−1]− E[Xn−1]2) + σ2µn−1

= µ2 var(Xn−1) + σ2µn−1

= µ4 var(Xn−2) + σ2(µn−1 + µn)

= · · ·
= µ2(n−1) var(X1) + σ2(µn−1 + µn + · · ·+ µ2n−3)

= σ2µn−1(1 + µ+ · · ·+ µn−1).

Of course, we can also obtain this using the probability generating function as
well.

Theorem. The probability of extinction q is the smallest root to the equation
q = F (q). Write µ = E[X1]. Then if µ ≤ 1, then q = 1; if µ > 1, then q < 1.

Proof. To show that it is the smallest root, let α be the smallest root. Then note
that 0 ≤ α⇒ F (0) ≤ F (α) = α since F is increasing (proof: write the function
out!). Hence F (F (0)) ≤ α. Continuing inductively, Fn(0) ≤ α for all n. So

q = lim
n→∞

Fn(0) ≤ α.

So q = α.
To show that q = 1 when µ ≤ 1, we show that q = 1 is the only root. We

know that F ′(z), F ′′(z) ≥ 0 for z ∈ (0, 1) (proof: write it out again!). So F is
increasing and convex. Since F ′(1) = µ ≤ 1, it must approach (1, 1) from above
the F = z line. So it must look like this:

z

F (z)

So z = 1 is the only root.
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4.2 Random walk and gambler’s ruin
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5 Continuous random variables IA Probability (Theorems with proof)

5 Continuous random variables

5.1 Continuous random variables

Proposition. The exponential random variable is memoryless, i.e.

P(X ≥ x+ z | X ≥ x) = P(X ≥ z).

This means that, say if X measures the lifetime of a light bulb, knowing it has
already lasted for 3 hours does not give any information about how much longer
it will last.

Proof.

P(X ≥ x+ z | X ≥ x) =
P(X ≥ x+ z)

P(X ≥ x)

=

∫∞
x+z

f(u) du∫∞
x
f(u) du

=
e−λ(x+z)

e−λx

= e−λz

= P(X ≥ z).

Theorem. If X is a continuous random variable, then

E[X] =

∫ ∞
0

P(X ≥ x) dx−
∫ ∞
0

P(X ≤ −x) dx.

Proof. ∫ ∞
0

P(X ≥ x) dx =

∫ ∞
0

∫ ∞
x

f(y) dy dx

=

∫ ∞
0

∫ ∞
0

I[y ≥ x]f(y) dy dx

=

∫ ∞
0

(∫ ∞
0

I[x ≤ y] dx

)
f(y) dy

=

∫ ∞
0

yf(y) dy.

We can similarly show that
∫∞
0

P(X ≤ −x) dx = −
∫ 0

−∞ yf(y) dy.

5.2 Stochastic ordering and inspection paradox

5.3 Jointly distributed random variables

Theorem. If X and Y are jointly continuous random variables, then they are
individually continuous random variables.

Proof. We prove this by showing that X has a density function.
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We know that

P(X ∈ A) = P(X ∈ A, Y ∈ (−∞,+∞))

=

∫
x∈A

∫ ∞
−∞

f(x, y) dy dx

=

∫
x∈A

fX(x) dx

So

fX(x) =

∫ ∞
−∞

f(x, y) dy

is the (marginal) pdf of X.

Proposition. For independent continuous random variables Xi,

(i) E[
∏
Xi] =

∏
E[Xi]

(ii) var(
∑
Xi) =

∑
var(Xi)

5.4 Geometric probability

5.5 The normal distribution

Proposition. ∫ ∞
−∞

1√
2πσ2

e−
1

2σ2
(x−µ)2 dx = 1.

Proof. Substitute z = (x−µ)
σ . Then

I =

∫ ∞
−∞

1√
2π
e−

1
2 z

2

dz.

Then

I2 =

∫ ∞
−∞

1√
2π
e−x

2/2 dx

∫ ∞
∞

1√
2π
e−y

2/2 dy

=

∫ ∞
0

∫ 2π

0

1

2π
e−r

2/2r dr dθ

= 1.

Proposition. E[X] = µ.

Proof.

E[X] =
1√
2πσ

∫ ∞
−∞

xe−(x−µ)
2/2σ2

dx

=
1√
2πσ

∫ ∞
−∞

(x− µ)e−(x−µ)
2/2σ2

dx+
1√
2πσ

∫ ∞
−∞

µe−(x−µ)
2/2σ2

dx.

The first term is antisymmetric about µ and gives 0. The second is just µ times
the integral we did above. So we get µ.

24



5 Continuous random variables IA Probability (Theorems with proof)

Proposition. var(X) = σ2.

Proof. We have var(X) = E[X2]−(E[X])2. Substitute Z = X−µ
σ . Then E[Z] = 0,

E[Z2] = 1
σ2E[X2].

Then

var(Z) =
1√
2π

∫ ∞
−∞

z2e−z
2/2 dz

=

[
− 1√

2π
ze−z

2/2

]∞
−∞

+
1√
2π

∫ ∞
−∞

e−z
2/2 dz

= 0 + 1

= 1

So varX = σ2.

5.6 Transformation of random variables

Theorem. If X is a continuous random variable with a pdf f(x), and h(x)
is a continuous, strictly increasing function with h−1(x) differentiable, then
Y = h(X) is a random variable with pdf

fY (y) = fX(h−1(y))
d

dy
h−1(y).

Proof.

FY (y) = P(Y ≤ y)

= P(h(X) ≤ y)

= P(X ≤ h−1(y))

= F (h−1(y))

Take the derivative with respect to y to obtain

fY (y) = F ′Y (y) = f(h−1(y))
d

dy
h−1(y).

Theorem. Let U ∼ U [0, 1]. For any strictly increasing distribution function F ,
the random variable X = F−1U has distribution function F .

Proof.
P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

Proposition. (Y1, · · · , Yn) has density

g(y1, · · · , yn) = f(s1(y1, · · · , yn), · · · sn(y1, · · · , yn))|J |

if (y1, · · · , yn) ∈ S, 0 otherwise.
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5.7 Moment generating functions

Theorem. The mgf determines the distribution of X provided m(θ) is finite
for all θ in some interval containing the origin.

Theorem. The rth moment X is the coefficient of θr

r! in the power series
expansion of m(θ), and is

E[Xr] =
dn

dθn
m(θ)

∣∣∣∣
θ=0

= m(n)(0).

Proof. We have

eθX = 1 + θX +
θ2

2!
X2 + · · · .

So

m(θ) = E[eθX ] = 1 + θE[X] +
θ2

2!
E[X2] + · · ·

Theorem. If X and Y are independent random variables with moment gener-
ating functions mX(θ),mY (θ), then X + Y has mgf mX+Y (θ) = mX(θ)mY (θ).

Proof.

E[eθ(X+Y )] = E[eθXeθY ] = E[eθX ]E[eθY ] = mX(θ)mY (θ).
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6 More distributions

6.1 Cauchy distribution

Proposition. The mean of the Cauchy distribution is undefined, while E[X2] =
∞.

Proof.

E[X] =

∫ ∞
0

x

π(1 + x2)
dx+

∫ 0

−∞

x

π(1 + x2)
dx =∞−∞

which is undefined, but E[X2] =∞+∞ =∞.

6.2 Gamma distribution

6.3 Beta distribution*

6.4 More on the normal distribution

Proposition. The moment generating function of N(µ, σ2) is

E[eθX ] = exp

(
θµ+

1

2
θ2σ2

)
.

Proof.

E[eθX ] =

∫ ∞
−∞

eθx
1√
2πσ

e−
1
2σ

2(x−µ)2 dx.

Substitute z = x−µ
σ . Then

E[eθX ] =

∫ ∞
−∞

1√
2π
eθ(µ+σz)e−

1
2 z

2

dz

= eθµ+
1
2 θ

2σ2

∫ ∞
−∞

1√
2π
e−

1
2 (z−θσ)

2

︸ ︷︷ ︸
pdf of N(σθ,1)

dz

= eθµ+
1
2 θ

2σ2

.

Theorem. Suppose X,Y are independent random variables with X ∼ N(µ1, σ
2
1),

and Y ∼ (µ2, σ
2
2). Then

(i) X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

(ii) aX ∼ N(aµ1, a
2σ2

1).

Proof.

(i)

E[eθ(X+Y )] = E[eθX ] · E[eθY ]

= eµ1θ+
1
2σ

2
1θ

2

· eµ2θ+
1
2σ

2
2θ

= e(µ1+µ2)θ+
1
2 (σ

2
1+σ

2
2)θ

2

which is the mgf of N(µ1 + µ2, σ
2
1 + σ2

2).
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(ii)

E[eθ(aX)] = E[e(θa)X ]

= eµ(aθ)+
1
2σ

2(aθ)2

= e(aµ)θ+
1
2 (a

2σ2)θ2

6.5 Multivariate normal
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7 Central limit theorem

Theorem (Central limit theorem). Let X1, X2, · · · be iid random variables with
E[Xi] = µ, var(Xi) = σ2 <∞. Define

Sn = X1 + · · ·+Xn.

Then for all finite intervals (a, b),

lim
n→∞

P
(
a ≤ Sn − nµ

σ
√
n
≤ b
)

=

∫ b

a

1√
2π
e−

1
2 t

2

dt.

Note that the final term is the pdf of a standard normal. We say

Sn − nµ
σ
√
n
→D N(0, 1).

Theorem (Continuity theorem). If the random variables X1, X2, · · · have mgf’s
m1(θ),m2(θ), · · · and mn(θ) → m(θ) as n → ∞ for all θ, then Xn →D the
random variable with mgf m(θ).

Proof. wlog, assume µ = 0, σ2 = 1 (otherwise replace Xi with Xi−µ
σ ).

Then

mXi(θ) = E[eθXi ] = 1 + θE[Xi] +
θ2

2!
E[X2

i ] + · · ·

= 1 +
1

2
θ2 +

1

3!
θ3E[X3

i ] + · · ·

Now consider Sn/
√
n. Then

E[eθSn/
√
n] = E[eθ(X1+...+Xn)/

√
n]

= E[eθX1/
√
n] · · ·E[eθXn/

√
n]

=
(
E[eθX1/

√
n]
)n

=

(
1 +

1

2
θ2

1

n
+

1

3!
θ3E[X3]

1

n3/2
+ · · ·

)n
→ e

1
2 θ

2

as n→∞ since (1 + a/n)n → ea. And this is the mgf of the standard normal.
So the result follows from the continuity theorem.
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8 Summary of distributions

8.1 Discrete distributions

8.2 Continuous distributions
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