Lent Term 2015

W. T. G.

1. Let (a_n) and (b_n) be two real sequences. Suppose that (a_n) is a subsequence of (b_n) and (b_n) is a subsequence of (a_n) . Does it follow that they are the same sequence?

2. For each positive integer k let $a_{2^k} = 1$ and for every n that is not a power of 2, let $a_n = 0$. Prove directly from the definition of convergence that the sequence (a_n) does not converge.

3. Let (a_n) be a real sequence. We say that $a_n \to \infty$ if for every K there exists N such that for every $n \ge N$ we have $a_n \ge K$.

- (i) Write down a similar definition for $a_n \to -\infty$.
- (ii) Show that $a_n \to -\infty$ if and only if $-a_n \to \infty$.
- (iii) Suppose that no a_n is 0. Prove that if $a_n \to \infty$, then $\frac{1}{a_n} \to 0$.
- (iv) Again suppose that no a_n is 0. If $\frac{1}{a_n} \to 0$, does it follow that $a_n \to \infty$?

4. Let $a_1 > b_1 > 0$ and for every $n \ge 1$ let $a_{n+1} = (a_n + b_n)/2$ and let $b_{n+1} = 2a_n b_n/(a_n + b_n)$. Show that $a_n > a_{n+1} > b_{n+1} > b_n$. Deduce that the two sequences converge to a common limit. What is that limit?

5. Let $(a_1, b_1) \supset (a_2, b_2) \supset \ldots$ be a nested sequence of non-empty open intervals. Must $\bigcap_{n=1}^{\infty} (a_n, b_n)$ be non-empty? If not, then find a (non-trivial) additional condition that guarantees that the intersection is non-empty.

6. (i) Let (a_n) be a real sequence that is bounded but that does not converge. Prove that it has two convergent subsequences with different limits.

(ii) Prove that every real sequence has a subsequence that converges or tends to $\pm \infty$.

7. Let a be a real number and let (a_n) be a sequence such that every subsequence of (a_n) has a further subsequence that converges to a. Prove that $a_n \to a$.

8. Let (a_n) be a Cauchy sequence. Prove that (a_n) has a subsequence (a_{n_k}) such that $|a_{n_p} - a_{n_q}| < 2^{-p}$ whenever $p \leq q$.

9. Let $f : \mathbb{R} \to (0, \infty)$ be a decreasing function. (That is, if x < y then $f(x) \ge f(y)$.) Define a sequence (a_n) inductively by $a_1 = 1$ and $a_{n+1} = a_n + f(a_n)$ for every $n \ge 1$. Prove that $a_n \to \infty$.

10. Investigate the convergence of the following series. For each expression that contains the variable z, find all complex numbers z for which the series converges.

$$\sum_{n} \frac{\sin n}{n^2} \sum_{n} \frac{n^2 z^n}{5^n} \sum_{n} \frac{(-1)^n}{4 + \sqrt{n}} \sum_{n} \frac{z^n (1-z)}{n} \sum_{n \ge 3} \frac{n^2}{(\log \log n)^{\log n}}$$

11. The two series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$ and $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$ have the same terms but in different orders. Let S_n and T_n be the partial sums to n terms. Let $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Show that $S_{2n} = H_{2n} - H_n$ and $T_{3n} = H_{4n} - \frac{1}{2}H_{2n} - \frac{1}{2}H_n$. Show that the sequence (S_n) converges to a limit S and that $T_n \to 3S/2$.

12. Prove that $\sum_{n} \frac{1}{n(\log n)^{\alpha}}$ converges if $\alpha > 1$ and diverges otherwise. Does the series $\sum_{n} \frac{1}{n \log n \log \log n}$ converge?

13. Let (a_n) be a sequence of positive real numbers such that $\sum_n a_n$ diverges. Prove that there exists a sequence (b_n) of positive real numbers such that $b_n/a_n \to 0$, but $\sum_n b_n$ is still divergent.

14. Let x be a real number and let $\sum_{n} a_n$ be a series that converges but that does not converge absolutely. Prove that the terms can be reordered so that the series converges to x. That is, show that there is a bijection $\pi : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n} a_{\pi(n)} = x$.

15. For every positive integer k write $\log_k(x)$ for $\log \log \dots \log(x)$, where the logarithm has been taken k times. (Thus, $\log_1(x) = \log x$, $\log_2(x) = \log \log x$, and so on.) Define a function $f : \mathbb{N} \to \mathbb{R}$ by taking f(n) to be $n \log n \log_2 n \dots \log_{k(n)} n$, where k(n) is the largest integer such that $\log_{k(n)} n \ge 1$. Does the series $\sum_n \frac{1}{f(n)}$ converge?

16. Can the open interval (0, 1) be written as a union of disjoint closed intervals of positive length?

Any comments or queries can be sent to wtg10@dpmms.cam.ac.uk.

Lent Term 2015

W. T. G.

1. Let (a_n) and (b_n) be two real sequences. Suppose that (a_n) is a subsequence of (b_n) and (b_n) is a subsequence of (a_n) . Suppose also that (a_n) converges. Does it follow that they are the same sequence?

2. Let $H : \mathbb{R} \to \mathbb{R}$ be defined as follows: if x < 0 then H(x) = 0 and if $x \ge 0$ then H(x) = 1. Prove carefully that H is not continuous (i) by directly using the definition of continuity and (ii) by using the sequence definition.

3. Suppose that $f(x) \to \ell$ as $x \to a$ and $g(y) \to k$ as $y \to \ell$. Does it follow that $g(f(x)) \to k$ as $x \to a$?

4. For each natural number n, let $f_n : [0,1] \to [0,1]$ be a continuous function, and for each n let h_n be defined by $h_n(x) = \max\{f_1(x), \ldots, f_n(x)\}$. Show that for each n the function h_n is continuous on [0,1]. Must the function h defined by $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous?

5. Let $g: [0,1] \to [0,1]$ be a continuous function. Prove that there exists some $c \in [0,1]$ such that g(c) = c. Such a c is called a *fixed point* of g.

Give an example of a bijection $h: [0,1] \to [0,1]$ with no fixed point.

Give an example of a continuous bijection $p: (0,1) \to (0,1)$ with no fixed point.

6. Prove that the function $q(x) = 2x^5 + 3x^4 + 2x + 16$ (defined on the reals) takes the value 0 exactly once, and that the number where it takes that value is somewhere in the interval [-2, -1].

7. Prove rigorously that there are exactly nine solutions to the simultaneous equations $x = 1000(y^3 - y)$ and $y = 1000(x^3 - x)$. That is, prove that there are exactly nine ordered pairs (x, y) such that the two equations are satisfied.

8. Let $f : [0,1] \to \mathbb{R}$ be continuous, with f(0) = f(1) = 0. Suppose that for every $x \in (0,1)$ there exists $\delta > 0$ such that both $x + \delta$ and $x - \delta$ belong to (0,1) and $f(x) = \frac{1}{2}(f(x-\delta) + f(x+\delta))$. Prove that f(x) = 0 for every $x \in [0,1]$.

9. Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows. If x is irrational, then f(x) = 0, while if x is rational, then f(x) = 1/q, where q is the denominator of x. (That is, x = p/q, with p and q coprime integers and q > 0.) Prove that f is continuous at every irrational and discontinuous at every rational.

10. Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Which of the following statements are always true and which are sometimes false?

- (i) If f is increasing, then $f'(x) \ge 0$ for every $x \in (a, b)$.
- (ii) If $f'(x) \ge 0$ for every $x \in (a, b)$, then f is increasing.
- (iii) If f is strictly increasing, then f'(x) > 0 for every $x \in (a, b)$.
- (iv) If f'(x) > 0 for every $x \in (a, b)$, then f is strictly increasing.

11. (i) Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that g(0) = g'(0) = 0 and g''(0) exists and is positive. Prove that there exists x > 0 such that g(x) > 0.

(ii) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0, and f''(0) exists and is positive. Prove that there exists x > 0 such that f(2x) > 2f(x).

12. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable everywhere. Prove that if $f'(x) \to \ell$ as $x \to \infty$, then $f(x)/x \to \ell$. If $f(x)/x \to \ell$ as $x \to \infty$, does it follow that $f'(x) \to \ell$?

13. Find a function $f : \mathbb{R} \to \mathbb{R}$ that takes every value in every interval. That is, for every a < b and every t there should exist $x \in (a, b)$ such that f(x) = t.

14. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that has the intermediate value property: that is, if f(a) < c < f(b) then there exists $x \in (a, b)$ such that f(x) = c. Suppose also that for every rational r the set $S_r = \{x : f(x) = r\}$ is closed. (This means that if (x_n) is any convergent sequence in S_r , then its limit also belongs to S_r .) Prove that f is continuous.

Lent Term 2015

W. T. G.

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the inequality $|f(x) - f(y)| \leq |x - y|^2$ for every $x, y \in \mathbb{R}$. Prove that f is constant.

2. (i) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(1/x)$ if $x \neq 0$ and f(0) = 0. Prove that f is differentiable everywhere. For which x is f' continuous at x?

(ii) Give an example of a function $g: \mathbb{R} \to \mathbb{R}$ that is differentiable everywhere such that g' is not bounded on the interval [-1, 1].

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with the property that $f(x) = o(x^n)$ for every positive integer n. (In other words, for every n we have $f(x)/x^n \to 0$ as $x \to 0$.) Does it follow that f is infinitely differentiable at 0?

4. By applying the mean value theorem to $\log(1 + x)$ on the interval [0, a/n], prove rigorously that $(1 + a/n)^n \to e^a$ as $n \to \infty$.

5. Find $\lim_{n \to \infty} n(a^{1/n} - 1)$, when a > 0. 6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \exp(-1/x^2)$ when $x \neq 0$ and f(0) = 0. Prove that f is infinitely differentiable and that $f^{(n)}(0) = 0$ for every $n \in \mathbb{N}$. What does Taylor's theorem tell us when we apply it to f at 0?

7. Find the radius of convergence of each of the following power series.

$$\sum_{n=0}^{\infty} \frac{2.4.6...(2n+2)}{1.4.7...(3n+1)} z^n \qquad \sum_{n=1}^{\infty} \frac{z^{3n}}{n2^n} \qquad \sum_{n=0}^{\infty} \frac{n^n z^n}{n!} \qquad \sum_{n=1}^{\infty} n^{\sqrt{n}} z^n$$

8. Find the derivative of tan x on the interval $(-\pi/2, \pi/2)$. How do you know that there is a differentiable inverse function $\arctan x$ from \mathbb{R} to $(-\pi/2, \pi/2)$? What is its derivative? By considering derivatives, prove that $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$ when |x| < 1.

9. Let f and g be two functions defined and differentiable on an open interval I containing 0. Suppose that f(0) = q(0) = 0 and that f'(x)/q'(x) converges to a limit ℓ as $x \to 0.$

(i) Show that there is an open interval of the form (0, a) on which q' does not vanish. Let 0 < x < a. By considering the function F(u) = f(x)g(u) - g(x)f(u), prove that there exists y with 0 < y < x such that $\frac{f'(y)}{g'(y)} = \frac{f(x)}{g(x)}$. Explain briefly why a similar statement holds for negative x.

(ii) Deduce *l'Hôpital's rule*, which states that under the conditions above, $f(x)/g(x) \to \ell$.

(iii) What is $\lim_{x \to \infty} (1 - \cos(\sin x))/x^2$?

10. Let (a_n) be a bounded real sequence. Prove that (a_n) has a subsequence that tends to $\limsup a_n$. What result from the course does this imply?

11. The infinite product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to converge to a if the sequence of partial products $P_n = (1 + a_1) \dots (1 + a_n)$ converges to a. Suppose that $a_n \ge 0$ for every n. Write $S_n = a_1 + \dots + a_n$. Prove that $S_n \le P_n \le e^{S_n}$ for every n, and deduce that $\prod_{n=1}^{\infty} (1 + a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges. Evaluate the product $\prod_{n=2}^{\infty} (1 + 1/(n^2 - 1))$.

12. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, let a and b be real numbers with a < b, and suppose that f'(a) < 0 < f'(b). Prove that there exists $c \in (a, b)$ such that f'(c) = 0. Deduce the more general result that if $f'(a) \neq f'(b)$ and z lies between f'(a) and f'(b), then there exists $c \in (a, b)$ such that f'(c) = z. (This result is called *Darboux's theorem*.)

13. Say that an ordered field \mathbb{F} has the *intermediate value property* if for every a < b and every continuous function $f : \mathbb{F} \to \mathbb{F}$, if f(a) < 0 and f(b) > 0 then there exists $c \in (a, b)$ such that f(c) = 0. Prove that every ordered field with the intermediate value property has the least upper bound property. (This implies that it is isomorphic to \mathbb{R} .)

14. (i) Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ has radius of convergence 1, and that it converges for every z such that |z| = 1, with the exception of z = 1.

(ii) Let z_1, \ldots, z_m be complex numbers of modulus 1. Find a power series $\sum_{n=0}^{\infty} a_n z^n$ with radius of convergence 1 that converges for every z such that |z| = 1, except when $z \in \{z_1, \ldots, z_m\}$, when it diverges.

15. (i) Let f and g be two *n*-times-differentiable functions from \mathbb{R} to \mathbb{R} . For $k \leq n$ and $x \in \mathbb{R}$, say that f and g agree to order k at x if $f^{(j)}(x) = g^{(j)}(x)$ for $j = 0, 1, \ldots, k-1$. Let $x_1 < x_2 < \cdots < x_r$ be real numbers, let k_1, \ldots, k_r be non-negative integers such that $k_1 + \cdots + k_r = n$, and suppose that for each $i \leq r$ the functions f and g agree to order k_i at x_i . If $r \geq 2$, prove that there exists x in the open interval (x_1, x_r) such that $f^{(n-1)}(x) = g^{(n-1)}(x)$. [Note that if you can do this when g is the zero function then you can do it in general. If you still find it too hard, then try it in the case r = n, so $k_1 = \cdots = k_n = 1$, and in the case k = 2, to get an idea what is going on.]

(ii) Let f be *n*-times differentiable, let $x_1 < \cdots < x_r$ be real numbers and let k_1, \ldots, k_r be non-negative integers with $k_1 + \cdots + k_r = n$. Prove that there is a polynomial p of degree at most n-1 such that for every $i \leq r$ and every $j < k_i$ we have $p^{(j)}(x_i) = f^{(j)}(x_i)$. [Hint: start by building a suitable basis of polynomials and then take linear combinations.]

(iii) Find an expression for the constant value of $p^{(n-1)}$.

 $\mathbf{2}$

Lent Term 2015

W. T. G.

1. Show directly from the definition of an integral that $\int_0^a x^2 dx = a^3/3$ for a > 0.

2. Give an example of a continuous function $f : [0, \infty) \to [0, \infty)$ such that $\int_0^\infty f(x) dx$ exists but f is unbounded.

3. Give an example of an integrable function $f : [0,1] \to \mathbb{R}$ such that $f(x) \ge 0$ for every x, f(y) > 0 for some y, and $\int_0^1 f(x) dx = 0$.

Prove that this cannot happen if in addition f is continuous.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be monotonic. Show that the set of x such that f is discontinuous at x is countable.

Let (x_n) be a sequence of distinct points in (0,1]. Let $f_n(x) = 0$ if $0 \le x < x_n$ and let $f_n(x) = 1$ if $x_n \le x \le 1$. For each x, let $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Prove that this series converges for every $x \in [0,1]$.

Explain why f must be integrable.

Prove that f is discontinuous at every x_n .

5. Define a function $f : [0,1] \to \mathbb{R}$ as follows. If x is irrational, then f(x) = 0. If x is rational, then write it in its lowest terms as p/q and then f(x) = 1/q. Prove that f is integrable. What is $\int_0^1 f(x) dx$?

6. Let a < b and let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function such that $f(x) \ge 0$ for every x. Prove that if $\int_a^b f(x) dx = 0$, then for every closed subinterval $I \subset [a, b]$ of positive length and every $\epsilon > 0$ there exists a closed subinterval $J \subset I$ of positive length such that $f(x) \le \epsilon$ for every $x \in J$.

Deduce that if f(x) > 0 for every x, then $\int_a^b f(x) dx > 0$.

7. Do these improper integrals converge?

(i) $\int_{1}^{\infty} \sin^{2}(1/x) dx$. (ii) $\int_{0}^{\infty} x^{p} \exp(-x^{q}) dx$ (with p, q > 0). (iii) $\int_{0}^{\infty} \sin(x^{2}) dx$.

8. Prove that
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \log 2$$
 as $n \to \infty$, and find the limit of $\frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{n-1}}{2n}$.

9. Let $f: [a, b] \to \mathbb{R}$ be continuous and suppose that $\int_a^b f(x)g(x)dx = 0$ for every continuous function $g: [a, b] \to \mathbb{R}$ with g(a) = g(b) = 0. Must f vanish identically?

10. Let $f: [0,1] \to \mathbb{R}$ be continuous. Let G(x,t) = t(x-1) when $t \le x$ and x(t-1) when $t \ge x$. Let $g(x) = \int_0^1 f(t)G(x,t)dt$. Show that g''(x) exists for $x \in (0,1)$ and equals f(x).

11. For positive x, define L(x) to be $\int_1^x \frac{dt}{t}$. Prove directly from this definition that the function L has the properties one normally expects of the logarithm function. In particular, prove that L(ab) = L(a) + L(b) for all positive a and b. If you adopted this as your fundamental definition of natural logarithms, then how would you define e?

12. For each non-negative integer n let $I_n(\theta) = \int_{-1}^1 (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} - 4n(n-1)I_{n-2}$ for all $n \ge 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$ for some pair P_n and Q_n of polynomials of degree at most 2n with integer coefficients.

Deduce that π is irrational.

13. Let f: [-1,1] be defined by $f(x) = x \sin(1/x)$ when $x \neq 0$ and f(0) = 0. Explain why f is integrable. Prove that there do not exist increasing functions g and h, defined on [-1,1], such that f(x) = g(x) - h(x) for every x.

14. Prove that if $f:[0,1] \to \mathbb{R}$ is integrable, then f has infinitely many points of continuity.

15*. Let $f : [0,1] \to \mathbb{R}$ be a function that is differentiable everywhere (with right and left derivatives at the end points) with a derivative f' that is bounded. Must f' be integrable?

Comments and corrections to wtg10@dpmms.cam.ac.uk