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Lent Term 2015 W. T. G.

1. Let (an) and (bn) be two real sequences. Suppose that (an) is a subsequence of (bn) and

(bn) is a subsequence of (an). Does it follow that they are the same sequence?

2. For each positive integer k let a2k = 1 and for every n that is not a power of 2, let

an = 0. Prove directly from the definition of convergence that the sequence (an) does not

converge.

3. Let (an) be a real sequence. We say that an → ∞ if for every K there exists N such

that for every n ≥ N we have an ≥ K.

(i) Write down a similar definition for an → −∞.

(ii) Show that an → −∞ if and only if −an →∞.

(iii) Suppose that no an is 0. Prove that if an →∞, then 1
an
→ 0.

(iv) Again suppose that no an is 0. If 1
an
→ 0, does it follow that an →∞?

4. Let a1 > b1 > 0 and for every n ≥ 1 let an+1 = (an+bn)/2 and let bn+1 = 2anbn/(an+bn).

Show that an > an+1 > bn+1 > bn. Deduce that the two sequences converge to a common

limit. What is that limit?

5. Let (a1, b1) ⊃ (a2, b2) ⊃ . . . be a nested sequence of non-empty open intervals. Must⋂∞
n=1(an, bn) be non-empty? If not, then find a (non-trivial) additional condition that

guarantees that the intersection is non-empty.

6. (i) Let (an) be a real sequence that is bounded but that does not converge. Prove that

it has two convergent subsequences with different limits.

(ii) Prove that every real sequence has a subsequence that converges or tends to ±∞.

7. Let a be a real number and let (an) be a sequence such that every subsequence of (an)

has a further subsequence that converges to a. Prove that an → a.

8. Let (an) be a Cauchy sequence. Prove that (an) has a subsequence (ank) such that

|anp − anq | < 2−p whenever p ≤ q.
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9. Let f : R → (0,∞) be a decreasing function. (That is, if x < y then f(x) ≥ f(y).)

Define a sequence (an) inductively by a1 = 1 and an+1 = an+f(an) for every n ≥ 1. Prove

that an →∞.

10. Investigate the convergence of the following series. For each expression that contains

the variable z, find all complex numbers z for which the series converges.
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11. The two series 1 − 1
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same terms but in different orders. Let Sn and Tn be the partial sums to n terms. Let

Hn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n
. Show that S2n = H2n−Hn and T3n = H4n− 1

2
H2n− 1

2
Hn. Show

that the sequence (Sn) converges to a limit S and that Tn → 3S/2.

12. Prove that
∑

n
1

n(logn)α
converges if α > 1 and diverges otherwise. Does the series∑

n
1

n logn log logn
converge?

13. Let (an) be a sequence of positive real numbers such that
∑

n an diverges. Prove that

there exists a sequence (bn) of positive real numbers such that bn/an → 0, but
∑

n bn is

still divergent.

14. Let x be a real number and let
∑

n an be a series that converges but that does not

converge absolutely. Prove that the terms can be reordered so that the series converges to

x. That is, show that there is a bijection π : N→ N such that
∑

n aπ(n) = x.

15. For every positive integer k write logk(x) for log log . . . log(x), where the logarithm

has been taken k times. (Thus, log1(x) = log x, log2(x) = log log x, and so on.) Define

a function f : N → R by taking f(n) to be n log n log2 n . . . logk(n) n, where k(n) is the

largest integer such that logk(n) n ≥ 1. Does the series
∑

n
1

f(n)
converge?

16. Can the open interval (0, 1) be written as a union of disjoint closed intervals of positive

length?

Any comments or queries can be sent to wtg10@dpmms.cam.ac.uk.
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1. Let (an) and (bn) be two real sequences. Suppose that (an) is a subsequence of (bn) and

(bn) is a subsequence of (an). Suppose also that (an) converges. Does it follow that they

are the same sequence?

2. Let H : R → R be defined as follows: if x < 0 then H(x) = 0 and if x ≥ 0 then

H(x) = 1. Prove carefully that H is not continuous (i) by directly using the definition of

continuity and (ii) by using the sequence definition.

3. Suppose that f(x) → ` as x → a and g(y) → k as y → `. Does it follow that

g(f(x))→ k as x→ a?

4. For each natural number n, let fn : [0, 1]→ [0, 1] be a continuous function, and for each

n let hn be defined by hn(x) = max{f1(x), . . . , fn(x)}. Show that for each n the function

hn is continuous on [0, 1]. Must the function h defined by h(x) = sup{fn(x) : n ∈ N} be

continuous?

5. Let g : [0, 1] → [0, 1] be a continuous function. Prove that there exists some c ∈ [0, 1]

such that g(c) = c. Such a c is called a fixed point of g.

Give an example of a bijection h : [0, 1]→ [0, 1] with no fixed point.

Give an example of a continuous bijection p : (0, 1)→ (0, 1) with no fixed point.

6. Prove that the function q(x) = 2x5 +3x4 +2x+16 (defined on the reals) takes the value

0 exactly once, and that the number where it takes that value is somewhere in the interval

[−2,−1].

7. Prove rigorously that there are exactly nine solutions to the simultaneous equations

x = 1000(y3− y) and y = 1000(x3− x). That is, prove that there are exactly nine ordered

pairs (x, y) such that the two equations are satisfied.

8. Let f : [0, 1] → R be continuous, with f(0) = f(1) = 0. Suppose that for every

x ∈ (0, 1) there exists δ > 0 such that both x + δ and x − δ belong to (0, 1) and f(x) =
1
2
(f(x− δ) + f(x+ δ)). Prove that f(x) = 0 for every x ∈ [0, 1].
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9. Define a function f : R → R as follows. If x is irrational, then f(x) = 0, while if x

is rational, then f(x) = 1/q, where q is the denominator of x. (That is, x = p/q, with

p and q coprime integers and q > 0.) Prove that f is continuous at every irrational and

discontinuous at every rational.

10. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Which of the

following statements are always true and which are sometimes false?

(i) If f is increasing, then f ′(x) ≥ 0 for every x ∈ (a, b).

(ii) If f ′(x) ≥ 0 for every x ∈ (a, b), then f is increasing.

(iii) If f is strictly increasing, then f ′(x) > 0 for every x ∈ (a, b).

(iv) If f ′(x) > 0 for every x ∈ (a, b), then f is strictly increasing.

11. (i) Let g : R → R be a differentiable function such that g(0) = g′(0) = 0 and g′′(0)

exists and is positive. Prove that there exists x > 0 such that g(x) > 0.

(ii) Let f : R→ R be a differentiable function such that f(0) = 0, and f ′′(0) exists and

is positive. Prove that there exists x > 0 such that f(2x) > 2f(x).

12. Let f : R → R be differentiable everywhere. Prove that if f ′(x) → ` as x → ∞, then

f(x)/x→ `. If f(x)/x→ ` as x→∞, does it follow that f ′(x)→ `?

13. Find a function f : R→ R that takes every value in every interval. That is, for every

a < b and every t there should exist x ∈ (a, b) such that f(x) = t.

14. Let f : R → R be a function that has the intermediate value property: that is, if

f(a) < c < f(b) then there exists x ∈ (a, b) such that f(x) = c. Suppose also that for

every rational r the set Sr = {x : f(x) = r} is closed. (This means that if (xn) is any

convergent sequence in Sr, then its limit also belongs to Sr.) Prove that f is continuous.
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1. Suppose that f : R → R satisfies the inequality |f(x) − f(y)| ≤ |x − y|2 for every

x, y ∈ R. Prove that f is constant.

2. (i) Let f : R → R be defined by f(x) = x2 sin(1/x) if x 6= 0 and f(0) = 0. Prove that

f is differentiable everywhere. For which x is f ′ continuous at x?

(ii) Give an example of a function g : R→ R that is differentiable everywhere such that

g′ is not bounded on the interval [−1, 1].

3. Let f : R → R be a differentiable function with the property that f(x) = o(xn) for

every positive integer n. (In other words, for every n we have f(x)/xn → 0 as x → 0.)

Does it follow that f is infinitely differentiable at 0?

4. By applying the mean value theorem to log(1 + x) on the interval [0, a/n], prove

rigorously that (1 + a/n)n → ea as n→∞.

5. Find lim
n→∞

n(a1/n − 1), when a > 0.

6. Let f : R → R be defined by f(x) = exp(−1/x2) when x 6= 0 and f(0) = 0. Prove

that f is infinitely differentiable and that f (n)(0) = 0 for every n ∈ N. What does Taylor’s

theorem tell us when we apply it to f at 0?

7. Find the radius of convergence of each of the following power series.

∞∑
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1.4.7 . . . (3n+ 1)
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√
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8. Find the derivative of tan x on the interval (−π/2, π/2). How do you know that there

is a differentiable inverse function arctanx from R to (−π/2, π/2)? What is its derivative?

By considering derivatives, prove that arctanx = x− x3/3 + x5/5− . . . when |x| < 1.

9. Let f and g be two functions defined and differentiable on an open interval I con-

taining 0. Suppose that f(0) = g(0) = 0 and that f ′(x)/g′(x) converges to a limit ` as

x→ 0.

(i) Show that there is an open interval of the form (0, a) on which g′ does not vanish.

Let 0 < x < a. By considering the function F (u) = f(x)g(u)− g(x)f(u), prove that there

exists y with 0 < y < x such that f ′(y)
g′(y) = f(x)

g(x)
. Explain briefly why a similar statement

holds for negative x.
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(ii) Deduce l’Hôpital’s rule, which states that under the conditions above, f(x)/g(x)→ `.

(iii) What is lim
x→0

(1− cos(sinx))/x2?

10. Let (an) be a bounded real sequence. Prove that (an) has a subsequence that tends to

lim sup an. What result from the course does this imply?

11. The infinite product
∏∞

n=1(1 + an) is said to converge to a if the sequence of partial

products Pn = (1 + a1) . . . (1 + an) converges to a. Suppose that an ≥ 0 for every n. Write

Sn = a1 + · · ·+ an. Prove that Sn ≤ Pn ≤ eSn for every n, and deduce that
∏∞

n=1(1 + an)

converges if and only if
∑∞

n=1 an converges. Evaluate the product
∏∞

n=2(1 + 1/(n2 − 1)).

12. Let f : R→ R be differentiable, let a and b be real numbers with a < b, and suppose

that f ′(a) < 0 < f ′(b). Prove that there exists c ∈ (a, b) such that f ′(c) = 0. Deduce

the more general result that if f ′(a) 6= f ′(b) and z lies between f ′(a) and f ′(b), then there

exists c ∈ (a, b) such that f ′(c) = z. (This result is called Darboux’s theorem.)

13. Say that an ordered field F has the intermediate value property if for every a < b and

every continuous function f : F → F, if f(a) < 0 and f(b) > 0 then there exists c ∈ (a, b)

such that f(c) = 0. Prove that every ordered field with the intermediate value property

has the least upper bound property. (This implies that it is isomorphic to R.)

14. (i) Show that the series
∑∞

n=1
zn

n
has radius of convergence 1, and that it converges

for every z such that |z| = 1, with the exception of z = 1.

(ii) Let z1, . . . , zm be complex numbers of modulus 1. Find a power series
∑∞

n=0 anz
n

with radius of convergence 1 that converges for every z such that |z| = 1, except when

z ∈ {z1, . . . , zm}, when it diverges.

15. (i) Let f and g be two n-times-differentiable functions from R to R. For k ≤ n and

x ∈ R, say that f and g agree to order k at x if f (j)(x) = g(j)(x) for j = 0, 1, . . . , k − 1.

Let x1 < x2 < · · · < xr be real numbers, let k1, . . . , kr be non-negative integers such

that k1 + · · · + kr = n, and suppose that for each i ≤ r the functions f and g agree to

order ki at xi. If r ≥ 2, prove that there exists x in the open interval (x1, xr) such that

f (n−1)(x) = g(n−1)(x). [Note that if you can do this when g is the zero function then

you can do it in general. If you still find it too hard, then try it in the case r = n, so

k1 = · · · = kn = 1, and in the case k = 2, to get an idea what is going on.]

(ii) Let f be n-times differentiable, let x1 < · · · < xr be real numbers and let k1, . . . , kr

be non-negative integers with k1 + · · · + kr = n. Prove that there is a polynomial p of

degree at most n− 1 such that for every i ≤ r and every j < ki we have p(j)(xi) = f (j)(xi).

[Hint: start by building a suitable basis of polynomials and then take linear combinations.]

(iii) Find an expression for the constant value of p(n−1).
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1. Show directly from the definition of an integral that
∫ a

0
x2dx = a3/3 for a > 0.

2. Give an example of a continuous function f : [0,∞) → [0,∞) such that
∫∞
0
f(x)dx

exists but f is unbounded.

3. Give an example of an integrable function f : [0, 1] → R such that f(x) ≥ 0 for every

x, f(y) > 0 for some y, and
∫ 1

0
f(x)dx = 0.

Prove that this cannot happen if in addition f is continuous.

4. Let f : R→ R be monotonic. Show that the set of x such that f is discontinuous at x

is countable.

Let (xn) be a sequence of distinct points in (0, 1]. Let fn(x) = 0 if 0 ≤ x < xn and let

fn(x) = 1 if xn ≤ x ≤ 1. For each x, let f(x) =
∑∞

n=1 2−nfn(x). Prove that this series

converges for every x ∈ [0, 1].

Explain why f must be integrable.

Prove that f is discontinuous at every xn.

5. Define a function f : [0, 1] → R as follows. If x is irrational, then f(x) = 0. If x is

rational, then write it in its lowest terms as p/q and then f(x) = 1/q. Prove that f is

integrable. What is
∫ 1

0
f(x)dx?

6. Let a < b and let f : [a, b] → R be a Riemann integrable function such that f(x) ≥ 0

for every x. Prove that if
∫ b

a
f(x)dx = 0, then for every closed subinterval I ⊂ [a, b] of

positive length and every ε > 0 there exists a closed subinterval J ⊂ I of positive length

such that f(x) ≤ ε for every x ∈ J .

Deduce that if f(x) > 0 for every x, then
∫ b

a
f(x)dx > 0.

7. Do these improper integrals converge?

(i)
∫∞
1

sin2(1/x)dx.

(ii)
∫∞
0
xp exp(−xq)dx (with p, q > 0).

(iii)
∫∞
0

sin(x2)dx.
1
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8. Prove that
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
→ log 2 as n→∞, and find the limit of

1

n+ 1
− 1

n+ 2
+ · · ·+ (−1)n−1

2n
.

9. Let f : [a, b]→ R be continuous and suppose that
∫ b

a
f(x)g(x)dx = 0 for every continu-

ous function g : [a, b]→ R with g(a) = g(b) = 0. Must f vanish identically?

10. Let f : [0, 1]→ R be continuous. Let G(x, t) = t(x− 1) when t ≤ x and x(t− 1) when

t ≥ x. Let g(x) =
∫ 1

0
f(t)G(x, t)dt. Show that g′′(x) exists for x ∈ (0, 1) and equals f(x).

11. For positive x, define L(x) to be
∫ x

1
dt
t
. Prove directly from this definition that the

function L has the properties one normally expects of the logarithm function. In particular,

prove that L(ab) = L(a) + L(b) for all positive a and b. If you adopted this as your

fundamental definition of natural logarithms, then how would you define e?

12. For each non-negative integer n let In(θ) =
∫ 1

−1(1− x2)n cos(θx)dx. Prove that θ2In =

2n(2n− 1)In−1− 4n(n− 1)In−2 for all n ≥ 2, and hence that θ2n+1In(θ) = n!(Pn(θ) sin θ+

Qn(θ) cos θ) for some pair Pn and Qn of polynomials of degree at most 2n with integer

coefficients.

Deduce that π is irrational.

13. Let f : [−1, 1] be defined by f(x) = x sin(1/x) when x 6= 0 and f(0) = 0. Explain

why f is integrable. Prove that there do not exist increasing functions g and h, defined on

[−1, 1], such that f(x) = g(x)− h(x) for every x.

14. Prove that if f : [0, 1]→ R is integrable, then f has infinitely many points of continuity.

15*. Let f : [0, 1]→ R be a function that is differentiable everywhere (with right and left

derivatives at the end points) with a derivative f ′ that is bounded. Must f ′ be integrable?

Comments and corrections to wtg10@dpmms.cam.ac.uk


