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The goal of this note is to outline the computation of the Adams spectral sequence
of tmf ∧RP∞. Essentially all differentials follow from the Leibniz rule, and products
can be computed with a computer. The only work to be done is to organize the
computation in order to conclude that we have indeed computed all differentials.

To do so, we need a complete calculation of the Adams E2 page, which was done
by Davis and Mahowald [1] (in their notation, Σ∞RP∞ = P1). As usual, we have

Exts,tA (k,H∗(tmf ∧ Σ∞RP∞)) = Exts,tA(2)(k,H∗(Σ
∞RP∞)).

This group is free over v8
2 , where |v8

2 | = (48, 8). Thus, to understand this group,
it suffices to describe the generators under v8

2 . In the Davis–Mahowald description,
these generators fall into 4 groups, and we colour-coded these in our chart in
Figure 1. We shall go through the different groups in the coming sections, giving a
formal description and describe the differentials that pertain to these groups. The
differentials up to degree 96 are depicted in Figures 4 to 7. The range 96–192 is fairly
similar and is depicted in Figure 8. Finally, v32

2 is permanent and so all differentials
are v32

2 -periodic.

Conventions

We set k = F2, and write xt−s,s for a generator in the corresponding bidegree.

1



4
8

12
16

20
24

28
32

36
4
0

4
4

4
8

5
2

5
6

6
0

048121620242832

F
ig

u
re

1:
E

x
t A

(2
)
(k
,H
∗(
P

1
))

2



1 ko type classes

We first deal with the gray classes that look like quotients of kos. To understand
these classes, we use the cofiber sequence

tmfhC2 → tmftC2 → ΣtmfhC2

which induces a short exact sequence on homology, if we think of tmfhC2 and tmftC2

as pro-spectra in the usual way. Moreover, by [2, Lemma 1.3], we know that

Exts,tc (k,H∗(tmftC2)) ∼=
⊕
k∈Z

Exts,tA(1)(k, k[8k]).

So the Ext groups of tmftC2 look like a bunch of ko’s, and for degree reasons, its
Adams spectral sequence must degenerate.

We claim that the gray classes are in the image of Exts,tc (k,H∗tmftC2), hence
must be permanent. It suffices to prove that the generators under h0 and v4

1 are in
the image, i.e. the classes in bidegree (8k− 1, 0). To do so, we note that they cannot
be in the image of

Exts,tc (k,H∗(tmfhC2))→ Exts,tc (k,H∗(tmftC2)).

Indeed, the left-hand side is

lim←−Exts,tA(2)(k,H∗(DΣ∞+ RPn)).

The top dimensional cell in DΣ∞+ RPn is always in degree 0. So the bigraded group

Exts,tA (k,H∗(tmfΣ∞
+ RP∞

)) has a bottom vanishing line equal to that of Exts,tA(2)(k, k).

In particular, the corresponding generators at (8k − 1, 0) are all below this line, so
are mapped injectively into ExtA(2)(k,H∗(P1)).

We now give a formal description of these classes. For any i ∈ Z, we let C(i) be
the chart of Σ8i−1ko truncated to below the line y = −x

4 + 6i− 1. Then the gray
classes are given by

⊕
i≥1 C(i) plus all its v8

2-multiples. We depict C(3) in Figure 2
for reference.

2 v2-periodic classes

We next look at the five brown classes. There is not much interesting to say about
them. They have no periodicity apart from v8

2 . For degree reasons, only x16,3 can
potentially hit something, but the target is v1 periodic while this is not. Note however
that v8

2 multiples of these need not be permanent, and indeed they will not be.
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Figure 2: Depiction of C(3)

3 w-periodic classes

Next, we look at the orange and yellow classes. The yellow classes is a free k[w]-
module on a single generator x31,6, where |w| = (5, 1). There is no actual element w
that you can multiply with; rather, it is given by the Massey product 〈h1, h2,−〉.

However, some multiples of w are realized by elements in π∗tmf, namely

β = w3

g = w4

γ = w5

So wk exists for k ≥ 3 and is permanent for sufficiently large k. These yellow classes
are in fact all permanent.

It is useful to note that x31,6 is in fact itself w divisible, with w6x1,0 = x31,6.
Note that w4x1,0 = gx1,0 is the sum of the two basis elements in bidegree (21, 4).
The two basis elements can be uniquely identified as follows — the brown class is the
unique non-zero class that is v4

1 torsion, while the black class is the unique non-zero
class that is h1 divisible.

These classes stay along for quite a while. The differentials that eventually kill
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them come from the differential

d3(v16
2 ) = w19

in the Adams spectral sequence for tmf.
The orange classes form a free k[w, v1]-module on a single generator x35,6. Again

v4
1 exists and is given by, well, v4

1 . It is also convenient to note that

d0 = w2v2
1

e0 = w3v1

α = w2v1

These have a fairly complicated differential pattern, but these all follow from the
differentials in the Adams spectral sequence for tmf and the Leibniz rule. It is
prudent to note that the Adams spectral sequence for tmf has

d2(v8
2) = gαβ = v1w

9,

so w9+kv1+j
1 x35,6 = 0 for all j, k ≥ 0 on the E3 page, and we are left with a sequence

w9+kx35,6 of dots separated by (5, 1). In fact the sequence starts at x20,3 with
w2x20,3 = x30,5 and w3x20,3 = x35,6. These again eventually get killed by d3’s in a
manner exactly analogous to the x31,6’s.

4 v1-periodic classes

We finally get to the black classes, which are v4
1-periodic. A “unit” of this v1

periodicity looks like this:

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

4
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7

8

9

10

1

2 2

2

1

1

1 1 1

0

−1

The numbers on the class denote how many times it is v4
1 divisible, relative to the

coordinates in the diagram. For example, x17,8 can be divided by v4
1 twice to give

x1,0, while x25,4 doesn’t even exist; only v4
1x25,4 does.
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The divisibilities of unlabelled classes are determined by h0 and h1 products (if
x divides, then so do h0x and h1x). If a class is completely unlabelled, then its label
should be interpreted to be 0.

Finally, the hollow classes are not actually in the diagram, but come from the
C’s. Their role is merely to indicate multiplications.

The differentials in D follow from the differentials for tmf via the Leibniz rule
again. They look as follows:

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
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The two “hooks” with lower left corner at (17, 8) and (25, 4) are v4
1 periodic. The

classes left (including the hollow ones) are killed by elements in k[v1, w] · x35,6.

5 Stems 97–192

The situation in stems 97–192 is very similar to the first 96 stems. In the Adams
spectral sequence for tmf, we have

d3(v16
2 ) = w19.

So in particular, all d2’s in this range are the same as in the first 96. Moreover, by
the Leibniz rule, for any x, we have

d3(xv16
2 ) = d3(x)v16

2 + w19x.
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For most of the terms, the w multiples have already been killed by d2’s, so the d3’s
get preserved. The extra d3’s we get come from w multiples of v16

2 x1,0, v24
2 x1,0 and

v16
2 x20,3.

The d4’s are also preserved by v16
2 , except for the d4 on w4x35,6, which supports

a d3 instead. This follows from the fact that our d4’s are v4
1 periodic and v4

1v
16
2 is

permanent.
We depict the interesting d3’s in Figure 8, omitting the classes that get killed by

differentials propagated from the first 96 stems. This is included because one has to
do a bit of book keeping to keep track of which of the w19+k multiples actually get
killed for small k.
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