
Construction of synthetic spectra
Dexter Chua

1 Freely adjoining colimits 2

2 The category of synthetic spectra 4

3 The map τ 7

The goal of these notes is to provide motivation for the construction of synthetic
spectra. They were originally constructed in [3], but the story presented here is
largely based on [2]. This is aimed towards readers who are familiar with the formal
properties of synthetic spectra and want to understand the construction of the
category.

The main idea is that the category of synthetic spectra is the derived category of
spectra with respect to E-homology. To understand this perspective, we begin with
the classical notion of the derived category of an abelian category.

Let A be an abelian category. One motivation for the derived category is
that quotienting often loses information, and we want to somehow remember that
information. For example, the cokernel of the map 0: Z→ Z is just Z itself, and the
source has been completely forgotten. In the derived category, we want to “remember”
this, and the cofiber of this map is the chain complex

Z

Z.

0

We can think of this as freely adding cokernels, so that in the derived category, the
cokernel does not lose information.

However, freely adding all cokernels is not quite what we want. For example,
the cokernel of 2: Z → Z should still be Z/2, because this quotient does not lose
any information. That is, we want short exact sequences to remain exact (fiber
sequences) in the derived category.∗

∗ Projectives and/or injectives enter quite late in this story. In a category with enough projectives,
everything can be resolved by projectives, so we can restrict our attention to projectives only.
Since short exact sequences of projectives always split, we can omit the second step, and end up
with the familiar presentation of the derived category.
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Thus, the construction of the derived category breaks into two steps — freely add
some colimits, and then force certain sequences to remain exact. The construction of
synthetic spectra will follow similar footsteps, but with various modifications so that
the resulting category has good categorical properties.

1 Freely adjoining colimits

We start with the problem of freely adjoining colimits. The simplest case is to freely
adjoin all small colimits, which gives

Theorem 1.1. [1, Theorem 5.1.5.6] Let C be a small ∞-category. Then the Yoneda
embedding y : C → P (C) = Fun(Cop,Spc) is the free co-completion of C. That is, for
any co-complete category D, pre-composition with the Yoneda embedding gives an
equivalence

FunL(P (C),D)→ Fun(C,D),

where FunL(P (C),D) is the category of co-continuous functors P (C)→ D.

If we only want to add some colimits, we restrict to a subcategory of P (C).

Theorem 1.2. [1, Proposition 5.3.6.2] Let C be a small ∞-category and K a
collection of simplicial sets. Let PK(C) be the full subcategory of P (C) generated by
representables under K-indexed colimits. Then for any category D with K-indexed
colimits, pre-composition with the Yoneda embedding gives an equivalence

FunK(PK(C),D)→ Fun(C,D),

where FunK(PK(C),D) is the category of K-indexed colimit-preserving functors
PK(C)→ D.

While the category PK(C) exists, it is pretty difficult to reason about in general.
Given a presheaf, there is no clear criterion one can use to check whether it is in
PK(C). Consequently, it is also difficult to prove categorical properties of PK(C), e.g.
if it is presentable.

Thankfully, in certain cases of interest, we can describe PK(C) as the category of
presheaves that preserve certain limits. Combining [1, Lemmas 5.5.4.16-18], we learn
that such categories are accessible localizations of P (C), and in particular presentable.
There are two main such examples:

Theorem 1.3 ([1, Corollary 5.3.5.4]). Let C be a small∞-category with finite colimits
and K be the collection of filtered simplicial sets. Then PK(C) is the full subcategory of
P (C) consisting of finite limit-preserving presheaves. That is, it sends finite colimits
in C to finite limits in Spc. Moreover, the Yoneda embedding C ↪→ PK(C) preserves
all finite colimits.
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In this case, we refer to PK(C) as Ind(C).

Theorem 1.4 ([1, Lemma 5.5.8.14, Proposition 5.5.8.10]). Let C be a small ∞-
category with finite coproducts and K be the collection of filtered simplicial sets and
∆op. Then PK(C) is the full subcategory of P (C) consisting of (finite) product-
preserving presheaves. Moreover, the Yoneda embedding C ↪→ PK(C) preserves all
finite coproducts.

In this case, we refer to PK(C) as PΣ(C).
The is that finite colimits are “complementary” to filtered colimits, while coprod-

ucts are “complementary” to (filtered colimits + geometric realization). Specifically,
the first result follows from the facts that

1. filtered colimits commute with finite limits in Spc; and

2. every colimit is a filtered colimit of finite colimits.

Remark 1.5. Recall that our original motivation was to freely add cokernels to an
abelian category. In a non-abelian setting, we would want to add coequalizers, or
rather their derived analogues — geometric realizations. This approach is taken by
[2], but results in a less pretty category. Our approach here is slightly different, and
is based on the ideas of [2, Section 6.4].

The main observation is that in most cases, our category C is generated freely
by its compact objects Cω. That is, we have C = Ind(Cω). Instead of freely adding
filtered colimits to Cω, then freely adding geometric realizations, a better strategy is
to start with Cω and freely add filtered colimits and geometric realizations in one
go. The restricted Yoneda functor C → PΣ(Cω) is easily seen to be fully faithful and
preserve filtered colimits. Since Cω is usually essentially small, this also lets us avoid
size issues.

Proof. We prove the case of Ind(C). The proof for PΣ(C) is similar. To disambiguate,
let Ind(C) ⊆ P (C) be the category of finite limit-preserving sheaves.

We first show that y : C → Ind(C) preserves finite colimits. This follows from a
straightforward calculation

Hom (colim y(Pα), X) = lim Hom(y(Pα), X)

= limX(Pα)

= X (colimPα)

= Hom (colim y(Pα), X) .

Since filtered colimits of spaces commute with finite limits, we know that Ind(C)
is closed under filtered colimits. Since representables preserve finite limits, we know
that PK(C) ⊆ Ind(C).
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To show the other inclusion, let X ∈ P (C). Then we can write

X = colim
j∈J

Xj ,

where J is filtered and each Xj is a finite colimit of representables. Now suppose
that X ∈ Ind(C). Our goal is to write X as a filtered colimit of representables.

Let ι : Ind(C) ↪→ P (C) be the inclusion, and L : P (C) → Ind(C) its left adjoint.
Then they both preserve filtered colimits, and

X = ιLX = colim
j∈J

ιLXj .

So it suffices to show that ιLXj is representable. Let Xj = colim y(Pα). Then we
have

LXj = L colim y(Pα) = colim y(Pα),

where the second colimit is taken inside Ind(C). But y : C → Ind(C) preserves finite
colimits, so the right-hand side is simply given by y (colimPα).

2 The category of synthetic spectra

Following our previous outline, to construct the category of synthetic spectra, we
start with PΣ(Spω), and then for every fiber sequence A → B → C such that the
second map is E∗ surjective, we force the image in PΣ(Spω) to be a fiber sequence.

In practice, there are some modifications we want to perform. Firstly, we want
the category of synthetic spectra to be stable. This can be fixed by simply stabilizing
PΣ(Spω), and we have the following result:

Theorem 2.1. Let C be a small ∞-category with finite coproducts. Let P Sp
Σ (C) be

the full subcategory of Fun(Cop,Sp) consisting of product-preserving functors. Then
P Sp

Σ (C) is the stabilization of PΣ(C).

To impose our second condition, we have to confront ourselves with the unfortu-
nate fact that E∗ surjections are not closed under tensor products. For example, the
map S → S/2 is (HZ)∗-surjective, but it is not after tensoring with S/2. This will
cause the resulting category to not have a symmetric monoidal structure. To avoid
this, we make the following definition.

Definition 2.2. Let E be a homotopy ring spectrum. We let SpfpE ⊆ Spω be the
full subcategory of spectra P such that E∗P is a projective E∗-module.

If P ∈ SpfpE , then for any other Y , we have E∗(P ⊗ Y ) = E∗P ⊗E∗ E∗Y . So we
learn that

1. SpfpE is closed under tensor products; and
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2. E∗-surjections are closed under tensor products in SpfpE .

Replacing Spω with SpfpE should not be seen as a big change. In the case E = HFp,
the two categories are equal, so there is literally no difference. In general, SpfpE
importantly contains the spheres, from which we can build all other finite spectra.

Thus, our starting category is P Sp
Σ (SpfpE ). We impose our epimorphism condition

as follows:

Definition 2.3. We define SynE to be the full subcategory of P Sp
Σ (SpfpE ) consisting

of functors X : (SpfpE )op → Sp such that for any cofiber sequence

A→ B → C

of spectra living in SpfpE that induces a short exact sequence on E∗-homology, the
induced sequence

X(C)→ X(B)→ X(A)

is a fiber sequence of spectra.

Remark 2.4. Since Sp is stable, this is equivalent to requiring that X(C) →
X(B)→ X(A) is a cofiber sequence. However, if we work with the non-stabilized
version PΣ(SpfpE ), being a fiber sequence is the correct condition.

Remark 2.5. We can turn SpfpE into a site by declaring coverings to be generated
by E∗ surjections. Then SynE is exactly the presheaves that are sheaves under this
topology. In particular, SynE is an accessible left exact localization of P Sp

Σ (SpfpE ).

We can write down some examples of synthetic spectra. Define the spectral
Yoneda embedding Y : Sp→ SynE by

Y (X)(P ) = F (P,X).

Then for any X ∈ Sp, we see that Y (X) is in fact a sheaf (i.e. in SynE). We should
think of this as a bad thing. Since we didn’t use anything about E to conclude that
Y (X) is a sheaf, it cannot possibly contain much information about the E-based
Adams spectral sequence.

This turns out to be the less useful version of the Yoneda embedding. Instead,
we define y : Sp→ P Sp

Σ (SpfpE ) by

y(X)(P ) = τ≥0F (P,X).

We should think of this as Σ∞ of the usual Yoneda embedding, characterized by the
fact that it takes values in connective spectra and Ω∞y(X)(P ) = Sp(P,X). In fact,
Yoneda’s lemma implies that if P ∈ SpfpE , then

P Sp
Σ (SpfpE )(y(P ), Z) = Ω∞Z(P ).
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Crucially, y(X) is not always a sheaf! Given a cofiber sequence

A→ B → C

in SpfpE , the induced sequence

τ≥0F (C,X)→ τ≥0F (B,X)→ τ≥0F (A,X)

is a cofiber sequence if and only if the map [B,X]→ [A,X] is surjective.
There is one case where this is in fact a sheaf. If X is E-injective, then the map

[B,X]→ [A,X] is given by

HomE∗E(E∗B,E∗X)→ HomE∗E(E∗A,E∗X).

Since E∗X is an injective E∗E-comodule and E∗A → E∗B is an injective map, it
follows that this map is in fact surjective. So

Theorem 2.6. If X is E-injective, then y(X) is a sheaf.

In general, we define

Definition 2.7. For X ∈ Sp, we define νX to be the sheafification of y(X).

Since sheafification is left adjoint to the inclusion, for P ∈ SpfpE and X ∈ SynE ,
we have

SynE(νP,X) = Ω∞X(P ).

Lemma 2.8 ([3, Lemma 4.23]). If A→ B → C is a cofiber sequence of spectra that
induces a short exact sequence on E∗-homology, then

νA→ νB → νC

is a cofiber sequence.

If these spectra are in SpfpE , then this follows from the definition of a sheaf plus
the identification SynE(νP,X) = Ω∞X(P ). The general case requires more work,
but is still true nonetheless.

Combining these two results, what we learn is that to compute νX for any X,
we resolve X by E-injectives as in the Adams resolution, and then apply ν to this
resolution. This remains a resolution in SynE (barring convergence issues), and ν of
E-injectives are simply given by the connective Yoneda embedding. This is what
makes ν much more interesting than Y .

Since the tensor product preserves sums and E∗-epimorphisms, we find that

Theorem 2.9. SynE is a symmetric monoidal category, and ν : SpfpE → SynE is
symmetric monoidal. In particular, S ≡ νS is the unit.
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3 The map τ

We define a bigrading on SynE by setting

(Σa,bX)(P ) = Σ−bX(Σ−a−bP ).

The precise combinations on the right are chosen for the purpose of agreeing with
the Adams grading in the Adams spectral sequence. Under this grading convention,
categorical suspension is Σ1,−1, while νΣ = Σ1,0ν. We write Sa,b = Σa,bS.

The main theorem is

Theorem 3.1. There is a map τ : S0,−1 → S with the property that

1. There is a fully faithful embedding ModCτ → ComodE∗E that sends Cτ ⊗ νX
to E∗X.

2. There is an equivalence of categories Modτ−1S ∼= τ−1S that sends τ−1νX to
X.

The τ -Bockstein spectral sequence for νX then has E2-page given

Es,t2 = Exts,tE∗E
(E∗, E∗X)

and converges to πt−sX. Unsurprisingly, this is the Adams spectral sequence for X.
We begin by constructing τ , which is in fact a natural transformation

τ : Σ0,−1X → X.

Fix X ∈ P Sp
Σ (SpfpE ), and let P ∈ SpfpE . In SpfpE , we have a pushout diagram

P ∗

∗ ΣP.

Applying X to this diagram, we get

X(P ) ∗

∗ X(ΣP ).

There is nothing that requires this to be a pushout diagram, but we get a comparison
map

ΣX(ΣP )→ X(P ).

This is exactly the map τ we seek.
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Remark 3.2. One can show that for any X ∈ SynE , the map τ : Σ0,−1X → X is
the tensor product of X with τ : S0,−1 → S.

Example 3.3. Recall that y(X)(P ) = τ≥0F (P,X). Then

(Σ0,−1y(X))(P ) = Στ≥0F (ΣP,X) = τ≥1F (P,X),

and τ is the natural covering map. So y(X)/τ = π0F (P,X) while τ−1y(X) = Y (X).

We now quickly look at modules over τ−1S and Cτ .

Definition 3.4. A synthetic spectrumX ∈ SynE is τ -invertible if it has a (necessarily
unique) τ−1S-module structure. Equivalently, if τ : Σ0,−1X → X is an equivalence.

Example 3.5. For any X ∈ Sp, the spectral Yoneda embedding Y (X) is τ -invertible.

In fact, every τ -invertible synthetic spectrum is of this form:

Theorem 3.6. The spectral Yoneda embedding Y : Sp→ SynE is fully faithful with
essential image given by τ -invertible synthetic spectra. Further, there is a natural
equivalence

Y (X) ∼= τ−1νX.

Now consider Cτ ⊗ νX ∼= νX/τ . If X is E-injective, then νX = y(X). So

[νA, νX/τ ] = π0F (A,X) = HomE∗E(E∗A,E∗X).

Given a general X, we can resolve it by E-injectives, and we find that

Lemma 3.7. Let A,X be any spectrum. Then

[Σa,bνA, νX/τ ] = Extb,a+b
E∗E

(E∗A,E∗X).

In fact, it is true that

Theorem 3.8 ([3, Theorem 4.46, Proposition 4.53]). There is a fully faithful embed-
ding ModCτ → ComodE∗E that sends νX to E∗X. If E is Landweber exact, then
this is essentially surjective.
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