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Let S be the sphere spectrum. Then S is, in particular, a commutative ring
spectrum (i.e. a commutative monoid in the stable homotopy category), using the
canonical identification S ∧ S ∼→ S. Let p be a prime. We seek the answer the
following question:

Question. When is S/p a ring spectrum?

To turn S/p into a ring spectrum, we have to solve the extension problem

S ∧ S S

S/p ∧ S/p S/p

∼

and then check associativity of the multiplication map (unitality is clear).
To solve the extension problem, we factor the left vertical map as S ∧ S →

S ∧ S/p → S/p ∧ S/p, and observe that there is an extension to S ∧ S/p given
essentially by the identity map. Thus we have to solve

S ∧ S/p

S ∧ S/p S/p

S/p ∧ S/p

p

∼

Here the vertical maps form a cofibration sequence, so solving the lifting problem is
equivalent to showing that p : S/p→ S/p is zero, or equivalently, that [S/p, S/p] =
Z/pZ. This can be calculated via a sequence of homotopy long exact sequence
calculations using S→ S→ S/p, or we can do it more systematically via the Adams
spectral sequence.

Since S/p is the cofiber of p : S→ S, we can compute its (co)homology using the
cellular chain complex. We find that
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Lemma. HF∗p(S/p) is Fp in degrees 0 and 1, and vanishes otherwise. The Bockstein
homomorphism acts non-trivially between the degrees.

Dualizing, we get

Corollary. As a Steenrod comodule, we have

(HFp)∗(S/p) =

{
E(ξ1) p = 2

E(τ0) p > 2
.

Note that when p = 2, the comodule E(ξ1) is not a subalgebra of the Steenrod
algebra, where ξ1 is not nilpotent. This immediately lets us conclude

Proposition. E(ξ1) does not have the structure of a comodule algebra. Hence S/2
does not admit a ring structure.

Proof. Write ψ for the comodule action. If E(ξ1) had an algebra structure, then

ψ(ξ21) = ψ(ξ1)2 = ξ21 ⊗ 1 + 1⊗ ξ21 .

However, the image of ψ in A⊗ E(ξ1) is given by linear combinations of 1⊗ 1 and
ξ1 ⊗ 1 + 1⊗ ξ1.

Alternatively, we can compute π2(S/2) using the Adams spectral sequence and
show that it has order 4 elements, hence 2 : S/2→ S/2 is non-zero.

For p > 3, we shall show that the spectrum S/p does admit a commutative ring
spectrum structure.

Noting that S/p is already p-local, the Adams spectral sequence gives us

Es,t2 = Exts,tA∗
(E(τ0), E(τ0))⇒ [Σt−sS/p,S/p].

By the change of rings theorem, we can write

Es,t2 = Exts,tA∗//E(τ0)
(E(τ0),F2) = Exts,tA∗//E(τ0)

(F2,F2)⊗ F2{1, x}

where x ∈ E0,−1
2 , since E(τ0) is a trivial A∗//E(τ0) comodule.

Now the terms of lowest degree in A∗//E(τ0) are generated by ξ1 and have degree
2p − 2. So in the cobar complex, we see that apart from F2{1, x}, all terms have
t− s ≥ 2p− 3. In particular,

Lemma. [S/p,S/p] = Z/pZ.

This tells us we can solve our original extension problem. We can actually go
further and understand the set of possible lifts. This amounts to understanding the
kernel of the map

[S/p ∧ S/p,S/p]→ [S ∧ S,S/p].
This is not difficult because we can use the same technique to compute these groups
explicitly. Using Künneth’s formula and the same calculation, we find that
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Lemma. Let p > 3. Then [S/p∧k,S/p] = Z/pZ for k = 1, 2, 3. More precisely, the
maps

[S/p∧k,S/p]→ [S∧k,S/p]

are bijections for k = 1, 2, 3.

Proof. We can directly calculate the value of [S/p∧k,S/p]. To see that the map we
wrote down in particular is a bijection, we note that both sides are Z/pZ, and the
map is non-zero since the unit map S→ S/p is in the image.

In particular, the case of k = 2 tells us there is a unique choice of µ : S/p∧S/p→
S/p up to homotopy, and in particular, since the map S ∧ S→ S/p is symmetric in
the S’s, the same is true of µ. Similarly, the k = 3 case tells us the multiplication is
associative, since that is true for S.

Answer.

• S/2 does not admit the structure of a ring spectrum.

• S/3 has a multiplication but is not (necessarily) associative.

• S/p is a (homotopy) commutative ring spectrum for p > 3.
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