Construction of v_1 and v_2 self-maps

Dexter Chua

1	Motivation and definitions	1
2	Construction of v_1 self maps	3
3	Construction of v_2 self maps	4

In these notes, I will define the notion of a v_n self map, and prove their existence for n = 1 and 2. These maps are used to construct infinite families in the homotopy groups of spheres.

1 MOTIVATION AND DEFINITIONS

The Adams-Novikov spectral sequence is a spectral sequence

$$\operatorname{Ext}_{BP_*BP}^{s,t}(BP_*,BP_*) \Rightarrow \pi_{t-s}(\mathbb{S}).$$

We will abbreviate $\operatorname{Ext}_{BP_*BP}^{s,t}(BP_*,M)$ as $\operatorname{Ext}^{s,t}(C)$, and sometimes omit the t. To use this to construct elements in $\pi_{t-s}(\mathbb{S})$, we have to do three things:

- 1. Find an element in $\operatorname{Ext}^{s,t}(BP_*)$
- 2. Show that it doesn't get hit by differentials
- 3. Show that all differentials vanish on it.

All three steps are difficult, except with some caveats.

- 1. We can do this if s = 0.
- 2. We can do this if s is small enough.
- 3. We can do this if we know the map of spheres actually exists, and want to show it is non-zero.

Of these three caveats, (1) is perhaps the worst, because the s=0 line is boring. To make better use of our ability to calculate Ext^0 , suppose we have a short exact sequence of comodules, such as

$$0 \longrightarrow BP_* \stackrel{p}{\longrightarrow} BP_* \longrightarrow BP_*/p \longrightarrow 0.$$

We then get a coboundary map

$$\delta : \operatorname{Ext}^0(BP_*/p) \to \operatorname{Ext}^1(BP_*).$$

So we can use this to produce elements in $\operatorname{Ext}^1(BP_*)$. To understand the geometry of this operation, so that we can do (3), we use the following lemma, whose proof is a fun diagram chase:

Lemma. Suppose $A \to B \to C \to \Sigma A$ is a cofiber sequence, and suppose that the map $BP_*A \to BP_*B$ is injective, so that we have a short exact sequence

$$0 \to BP_*A \to BP_*B \to BP_*C \to 0.$$

Suppose $f: \mathbb{S}^? \to C$ is a map, whose corresponding element in the Adams spectral sequence is $\hat{f} \in \operatorname{Ext}^s(BP_*C)$. Then the composition $\mathbb{S}^? \to C \to \Sigma A$ corresponds to $\delta \hat{f} \in \operatorname{Ext}^{s+1}(BP_*C)$. In particular, $\delta \hat{f}$ is a permanent cycle.

The slogan is

If δ comes from geometry, it sends permanent cycles to permanent cycles.

For the short exact sequence above, we can realize it as the BP homology of

$$\mathbb{S} \xrightarrow{p} \mathbb{S} \longrightarrow \mathbb{S}/p \equiv V(0).$$

Recall that $\operatorname{Ext}^0(BP_*/p) = \mathbb{F}_p[v_1]$. If we can find a map $\tilde{v}_1 : \mathbb{S}^{2p-2} \to V(0)$ that gives $v_1 \in \operatorname{Ext}^0(BP_*/p)$, then we know $\delta(v_1) \in \operatorname{Ext}^1(BP_*/p)$ is a permanent cycle. Since this has s=1, no differentials can hit it, and as long as $\delta(v_1) \neq 0 \in \operatorname{Ext}^1(BP_*)$, which is a *purely algebraic problem*, we get a non-trivial element in the homotopy groups of sphere.

This is actually not a very useful operation to perform, because the way we are going to construct \tilde{v}_1 is by analyzing the Adams–Novikov spectral sequence for V(0), which is not very much easier than finding the element in $\operatorname{Ext}^1(BP_*)$ directly.

But if we can promote this to a map $v_1: \Sigma^{2p-2}V(0) \to V(0)$ that induces multiplication by v_1 on BP_* , then we can form the composition

$$\mathbb{S}^{t(2p-2)} \hookrightarrow \Sigma^{t(2p-2)} V(0) \xrightarrow{v_1^t} V(0)$$

which represents $v_1^t \in \operatorname{Ext}^0(BP_*/p)$, where the first map is the canonical quotient map $\mathbb{S} \to \mathbb{S}/p = V(0)$. We then know that $\delta(v_1^t) \in \operatorname{Ext}^1(BP_*)$ is permanent, and the above

argument goes through. Thus, by constructing a single map $v_1: \Sigma^{2p-2}V(0) \to V(0)$, we have found an *infinite* family of permanent cycles in Ext¹, knowing by magic that all the differentials from it must vanish. It is in fact true that for p > 2, the map v_1 exists and they are all non-trivial. These elements are known as α_t .

The map v_1 is known as a v_1 self map of V(0). If we are equipped with such a map, we can play the same game with the cofiber sequence

$$\Sigma^{2p-2}V(0) \xrightarrow{v_1} V(0) \to V(1).$$

We then know that $BP_*V(1) = BP_*/(p, v_1)$, and we have a short exact sequence

$$0 \longrightarrow BP_*/p \xrightarrow{v_1} BP_*/p \longrightarrow BP_*/(p, v_1) \longrightarrow 0.$$

Again we know that $\operatorname{Ext}^0(BP_*/(p,v_1)) = \mathbb{F}_p[v_2]$, and we can seek a v_2 self map $v_2: \Sigma^{2p^2-2}V(1) \to V(1)$ that induces multiplication by v_2 on BP_* . If we can do so, then we know that $\delta(v_2^t) \in \operatorname{Ext}^1(BP_*/p)$ is a permanent cycle, and hence $\delta\delta(v_2^t) \in \operatorname{Ext}^2(BP_*)$ is also a permanent cycle. This gives us a second sequence of elements in the stable homotopy group of spheres. Moreover, in this case the non-triviality is again an algebraic problem of showing that $\delta\delta(v_2^t) \neq 0 \in \operatorname{Ext}^2(BP_*)$, since no differentials can hit it. These elements are known as β_t .

In these notes, I will construct the v_1 self maps for p>2 and v_2 self maps for p>3. It is true that the corresponding α_t and β_t are in fact non-zero, but I will not prove it here. These maps were first constructed by Adams and Smith (for v_1 and v_2 respectively), but they had to do more work because they didn't have BP and the Adams–Novikov spectral sequence.

We can of course continue this process to seek v_n self maps for larger n, and you should be glad to hear that this will become prohibitively difficult way before we run out of Greek letters.

2 Construction of v_1 self maps

We wish to construct a map $\Sigma^{2p-2}V(0) \to V(0)$ inducing multiplication by v_1 on BP_* homology. The strategy is to construct a map $\mathbb{S}^{2p-2} \to V(0)$ that induces multiplication by v_1 on BP_* homology, and then extend it to a map $\Sigma^{2p-2}V(0) \to V(0)$ by obstruction theory.

First consider the BP Adams–Novikov spectral sequence for V(0). In degrees up to 2p-2, the spectral sequence looks like

where $v_1 \in (2p-2,0)$ and $t_1 \in (2p-3,1)$. If p=2, then we have an extra t_1^2 which will be right above v_1 .

In either case, we see that there is no room for extra differentials. So we see that

Lemma. There is a map $\tilde{v}_1: \mathbb{S}^{2p-2} \to V(0)$ that induces multiplication by v_1 on BP_* . If p > 2, then this map has order p and is unique.

Since $V(0) = \mathbb{S}/p$, the map \tilde{v}_1 having order p is the same as it extending to a map $\Sigma^{2p-2}V(0)$. Thus, we deduce that

Theorem. If p > 2, then there is a map $v_1 : \Sigma^{2p-2}V(0) \to V(0)$ that induces multiplication by v_1 on BP_* .

In the case p=2, we know $\pi_2V(0)=\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\oplus\mathbb{Z}/2$. If it is $\mathbb{Z}/4\mathbb{Z}$, then this map has order 4 and does not lift to a map $\Sigma^2V(0)\to V(0)$. This is indeed the case, as one can check using the $H\mathbb{F}_2$ Adams spectral sequence, so we do not have a v_1 self map at p=2.

3 Construction of v_2 self maps

We next attempt to construct v_2 self maps. It turns out there is no v_2 self map when p = 3, so in this section we will exclusively concentrate on the case p > 5.

We first sketch the argument to see how far in the Adams–Novikov spectral sequence we have to go. There is an element $v_2 \in \operatorname{Ext}^{0,2p^2-2}(BP_*,BP_*/(p,v_1))$. We want to show this survives to give a map $\mathbb{S}^{2p^2-2} \to V(1)$, and so we will have to understand the $t-s=2p^2-3$ column, which we will find to be empty.

If we further find that this map has order p, then it factors through $\Sigma^{2p^2-2}V(0)$. This is the same as saying there are no elements in the $t-s=2p^2-2$ column apart from (multiples of) v_2 .

Finally, to show that this descends to a map from $\Sigma^{2p^2-2}V(1)$, we precompose with the (suspension of the) v_1 self map of V(0) to get a map

$$\Sigma^{2p^2+2p-4}V(0) \xrightarrow{\Sigma^{2p^2-2}v_1} \Sigma^{2p^2-2}V(0) \longrightarrow V(1),$$

and we have to show that this vanishes. We shall show that $[\Sigma^{2p^2+2p-4}V(0),V(1)]=0$ using the long exact sequence

$$[\mathbb{S}^{2p^2+2p-3},V(1)] \to [\Sigma^{2p^2+2p-4}V(0),V(1)] \to [\mathbb{S}^{2p^2+2p-4},V(1)]$$

given by the cofiber sequence $\mathbb{S} \stackrel{p}{\to} \mathbb{S} \to V(0)$.

So to show that v_2 exists, we have to prove the following:

Theorem. Suppose p > 3. Then $\operatorname{Ext}^{s,t}(BP_*/(p,v_1)) = 0$ for

$$t-s = 2p^2 - 3$$
, $2p^2 + 2p - 3$, $2p^2 + 2p - 4$.

Moreover, the column $t - s = 2p^2 - 2$ is generated by v_2 of order p.

So we will have to compute the Adams–Novikov spectral sequence up to $t-s \le 2p^2 + 2p - 3$. In Ravenel's green book, the computation was done up to $\sim p^3$, but for our range, we can get away with doing some simple counting.

In this range, the generators in BP_*BP that show up in the cobar complex are t_1, t_2 and v_2 . Note that there are two ways we can multiply t_1 — either in BP_*BP itself, or as $t_1 \otimes t_1$ in the cobar complex. In either case, any appearance of t_1 will contribute at least 2p-3 to t-s. Similarly, t_2 and v_2 contribute $2p^2-3$ and $2p^2-2$ respectively. The assumption that $p \geq 5$ allows us to perform the following difficult computation:

Theorem. If
$$p \geq 5$$
, then $2p - 3 \geq 7$.

Thus, we can enumerate all the terms that appear in the cobar complex in the range $t - s \le 2p^2 + 2p - 3$:

Element	t-s
Terms involving only t_1	??
v_2	$2p^2 - 2$
t_2	$2p^2 - 3$
t_1v_2	$2p^2 + 2p - 5$
t_1t_2	$2p^2 + 2p - 5$
$t_1 \otimes t_2$	$2p^2 + 2p - 6$
$t_2\otimes t_1$	$2p^2 + 2p - 6$

The term t_2 is in a problematic column, but it shall not concern us for two reasons. Firstly, it has s=1, so it wouldn't get hit by our differentials. Secondly, we can calculate that $d(t_2)=t_1\otimes t_1^p$ (e.g. see 4.3.15 of Ravenel's Green book), and so t_2 does not actually appear in the Adams spectral sequence. So we would be done if we can show that there are no purely t_1 terms appearing in the four columns of the theorem.

The element t_1 is a primitive element, and the following lemma is convenient:

Lemma. Let $\Gamma = P(x)$ be a Hopf algebra over \mathbb{F}_p (p > 2) on one primitive generator in even degree. Then

$$\operatorname{Ext}_{\Gamma}(\mathbb{F}_p, \mathbb{F}_p) = E(h_i : i = 0, 1, \ldots) \otimes P(b_i : i = 0, 1, \ldots)$$

where

$$h_i = x^{p^i} \in \operatorname{Ext}^1, \quad b_i = \sum_{0 \le j \le p} \frac{1}{p} {p \choose j} x^{jp^i} \otimes x^{(p-j)p^i} \in \operatorname{Ext}^2.$$

The presence of elements not involving t_1 will not increase the number of purely t_1 cohomology classes, but may kill off some if the coboundary of some term is purely t_1 (e.g. $d(t_2)$). So it is enough to see that there are no product of the h_i and b_i fall into the relevant columns.

In degrees $t - s \le 2p^2 + 2p - 4$, we have generators

$$1 \in \operatorname{Ext}^{0,0}, \quad h_0 \in \operatorname{Ext}^{1,2p-2}, \quad h_1 \in \operatorname{Ext}^{1,2p^2-2p}, \quad b_0 \in \operatorname{Ext}^{2,2p^2-2p},$$

We see that no product of these can enter the column we care about. So we are done. As a side note, in the case p=3, we have $2p^2+2p-3=21$, and $h_1b_0\in\operatorname{Ext}^{3,24}$ is a non-trivial element with $t-s=2p^2+2p-3$.