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In these notes, I will define the notion of a vn self map, and prove their existence
for n = 1 and 2. These maps are used to construct infinite families in the homotopy
groups of spheres.

1 Motivation and definitions

The Adams–Novikov spectral sequence is a spectral sequence

Exts,tBP∗BP (BP∗, BP∗)⇒ πt−s(S).

We will abbreviate Exts,tBP∗BP (BP∗,M) as Exts,t(C), and sometimes omit the t.
To use this to construct elements in πt−s(S), we have to do three things:

1. Find an element in Exts,t(BP∗)

2. Show that it doesn’t get hit by differentials

3. Show that all differentials vanish on it.

All three steps are difficult, except with some caveats.

1. We can do this if s = 0.

2. We can do this if s is small enough.

3. We can do this if we know the map of spheres actually exists, and want to
show it is non-zero.
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Of these three caveats, (1) is perhaps the worst, because the s = 0 line is boring.
To make better use of our ability to calculate Ext0, suppose we have a short exact
sequence of comodules, such as

0 −→ BP∗
p−→ BP∗ −→ BP∗/p −→ 0.

We then get a coboundary map

δ : Ext0(BP∗/p)→ Ext1(BP∗).

So we can use this to produce elements in Ext1(BP∗). To understand the geometry
of this operation, so that we can do (3), we use the following lemma, whose proof is
a fun diagram chase:

Lemma. Suppose A → B → C → ΣA is a cofiber sequence, and suppose that the
map BP∗A→ BP∗B is injective, so that we have a short exact sequence

0→ BP∗A→ BP∗B → BP∗C → 0.

Suppose f : S? → C is a map, whose corresponding element in the Adams spectral
sequence is f̂ ∈ Exts(BP∗C). Then the composition S? → C → ΣA corresponds to

δf̂ ∈ Exts+1(BP∗C). In particular, δf̂ is a permanent cycle.

The slogan is

If δ comes from geometry, it sends permanent cycles to permanent cycles.

For the short exact sequence above, we can realize it as the BP homology of

S p−→ S −→ S/p ≡ V (0).

Recall that Ext0(BP∗/p) = Fp[v1]. If we can find a map ṽ1 : S2p−2 → V (0) that
gives v1 ∈ Ext0(BP∗/p), then we know δ(v1) ∈ Ext1(BP∗/p) is a permanent cycle.
Since this has s = 1, no differentials can hit it, and as long as δ(v1) 6= 0 ∈ Ext1(BP∗),
which is a purely algebraic problem, we get a non-trivial element in the homotopy
groups of sphere.

This is actually not a very useful operation to perform, because the way we are
going to construct ṽ1 is by analyzing the Adams–Novikov spectral sequence for V (0),
which is not very much easier than finding the element in Ext1(BP∗) directly.

But if we can promote this to a map v1 : Σ2p−2V (0) → V (0) that induces
multiplication by v1 on BP∗, then we can form the composition

St(2p−2) ↪→ Σt(2p−2)V (0)
vt
1−→ V (0)

which represents vt1 ∈ Ext0(BP∗/p), where the first map is the canonical quotient map
S→ S/p = V (0). We then know that δ(vt1) ∈ Ext1(BP∗) is permanent, and the above

2



argument goes through. Thus, by constructing a single map v1 : Σ2p−2V (0)→ V (0),
we have found an infinite family of permanent cycles in Ext1, knowing by magic
that all the differentials from it must vanish. It is in fact true that for p > 2, the
map v1 exists and they are all non-trivial. These elements are known as αt.

The map v1 is known as a v1 self map of V (0). If we are equipped with such a
map, we can play the same game with the cofiber sequence

Σ2p−2V (0)
v1−→ V (0)→ V (1).

We then know that BP∗V (1) = BP∗/(p, v1), and we have a short exact sequence

0 −→ BP∗/p
v1−→ BP∗/p −→ BP∗/(p, v1) −→ 0.

Again we know that Ext0(BP∗/(p, v1)) = Fp[v2], and we can seek a v2 self map

v2 : Σ2p2−2V (1) → V (1) that induces multiplication by v2 on BP∗. If we can
do so, then we know that δ(vt2) ∈ Ext1(BP∗/p) is a permanent cycle, and hence
δδ(vt2) ∈ Ext2(BP∗) is also a permanent cycle. This gives us a second sequence
of elements in the stable homotopy group of spheres. Moreover, in this case the
non-triviality is again an algebraic problem of showing that δδ(vt2) 6= 0 ∈ Ext2(BP∗),
since no differentials can hit it. These elements are known as βt.

In these notes, I will construct the v1 self maps for p > 2 and v2 self maps for
p > 3. It is true that the corresponding αt and βt are in fact non-zero, but I will not
prove it here. These maps were first constructed by Adams and Smith (for v1 and
v2 respectively), but they had to do more work because they didn’t have BP and
the Adams–Novikov spectral sequence.

We can of course continue this process to seek vn self maps for larger n, and you
should be glad to hear that this will become prohibitively difficult way before we
run out of Greek letters.

2 Construction of v1 self maps

We wish to construct a map Σ2p−2V (0) → V (0) inducing multiplication by v1 on
BP∗ homology. The strategy is to construct a map S2p−2 → V (0) that induces
multiplication by v1 on BP∗ homology, and then extend it to a map Σ2p−2V (0)→
V (0) by obstruction theory.

First consider the BP Adams–Novikov spectral sequence for V (0). In degrees up
to 2p− 2, the spectral sequence looks like
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t− s

s

1 v1

t1 d2

where v1 ∈ (2p− 2, 0) and t1 ∈ (2p− 3, 1). If p = 2, then we have an extra t21 which
will be right above v1.

In either case, we see that there is no room for extra differentials. So we see that

Lemma. There is a map ṽ1 : S2p−2 → V (0) that induces multiplication by v1 on
BP∗. If p > 2, then this map has order p and is unique.

Since V (0) = S/p, the map ṽ1 having order p is the same as it extending to a
map Σ2p−2V (0). Thus, we deduce that

Theorem. If p > 2, then there is a map v1 : Σ2p−2V (0) → V (0) that induces
multiplication by v1 on BP∗.

In the case p = 2, we know π2V (0) = Z/4Z or Z/2⊕Z/2. If it is Z/4Z, then this
map has order 4 and does not lift to a map Σ2V (0)→ V (0). This is indeed the case,
as one can check using the HF2 Adams spectral sequence, so we do not have a v1

self map at p = 2.

3 Construction of v2 self maps

We next attempt to construct v2 self maps. It turns out there is no v2 self map when
p = 3, so in this section we will exclusively concentrate on the case p > 5.

We first sketch the argument to see how far in the Adams–Novikov spectral

sequence we have to go. There is an element v2 ∈ Ext0,2p2−2(BP∗, BP∗/(p, v1)). We

want to show this survives to give a map S2p2−2 → V (1), and so we will have to
understand the t− s = 2p2 − 3 column, which we will find to be empty.

If we further find that this map has order p, then it factors through Σ2p2−2V (0).
This is the same as saying there are no elements in the t− s = 2p2 − 2 column apart
from (multiples of) v2.

Finally, to show that this descends to a map from Σ2p2−2V (1), we precompose
with the (suspension of the) v1 self map of V (0) to get a map

Σ2p2+2p−4V (0)
Σ2p2−2v1−→ Σ2p2−2V (0) −→ V (1),

4



and we have to show that this vanishes. We shall show that [Σ2p2+2p−4V (0), V (1)] = 0
using the long exact sequence

[S2p2+2p−3, V (1)]→ [Σ2p2+2p−4V (0), V (1)]→ [S2p2+2p−4, V (1)]

given by the cofiber sequence S p→ S→ V (0).
So to show that v2 exists, we have to prove the following:

Theorem. Suppose p > 3. Then Exts,t(BP∗/(p, v1)) = 0 for

t− s = 2p2 − 3, 2p2 + 2p− 3, 2p2 + 2p− 4.

Moreover, the column t− s = 2p2 − 2 is generated by v2 of order p.

So we will have to compute the Adams–Novikov spectral sequence up to t− s ≤
2p2 + 2p− 3. In Ravenel’s green book, the computation was done up to ∼ p3, but
for our range, we can get away with doing some simple counting.

In this range, the generators in BP∗BP that show up in the cobar complex are
t1, t2 and v2. Note that there are two ways we can multiply t1 — either in BP∗BP
itself, or as t1 ⊗ t1 in the cobar complex. In either case, any appearance of t1 will
contribute at least 2p− 3 to t− s. Similarly, t2 and v2 contribute 2p2− 3 and 2p2− 2
respectively. The assumption that p ≥ 5 allows us to perform the following difficult
computation:

Theorem. If p ≥ 5, then 2p− 3 ≥ 7.

Thus, we can enumerate all the terms that appear in the cobar complex in the
range t− s ≤ 2p2 + 2p− 3:

Element t− s
Terms involving only t1 ??

v2 2p2 − 2
t2 2p2 − 3
t1v2 2p2 + 2p− 5
t1t2 2p2 + 2p− 5
t1 ⊗ t2 2p2 + 2p− 6
t2 ⊗ t1 2p2 + 2p− 6

The term t2 is in a problematic column, but it shall not concern us for two
reasons. Firstly, it has s = 1, so it wouldn’t get hit by our differentials. Secondly, we
can calculate that d(t2) = t1 ⊗ tp1 (e.g. see 4.3.15 of Ravenel’s Green book), and so
t2 does not actually appear in the Adams spectral sequence. So we would be done if
we can show that there are no purely t1 terms appearing in the four columns of the
theorem.

The element t1 is a primitive element, and the following lemma is convenient:
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Lemma. Let Γ = P (x) be a Hopf algebra over Fp (p > 2) on one primitive generator
in even degree. Then

ExtΓ(Fp,Fp) = E(hi : i = 0, 1, . . .)⊗ P (bi : i = 0, 1, . . .)

where

hi = xp
i

∈ Ext1, bi =
∑

0<j<p

1

p

(
p

j

)
xjp

i

⊗ x(p−j)pi

∈ Ext2 .

The presence of elements not involving t1 will not increase the number of purely
t1 cohomology classes, but may kill off some if the coboundary of some term is purely
t1 (e.g. d(t2)). So it is enough to see that there are no product of the hi and bi fall
into the relevant columns.

In degrees t− s ≤ 2p2 + 2p− 4, we have generators

1 ∈ Ext0,0, h0 ∈ Ext1,2p−2, h1 ∈ Ext1,2p2−2p, b0 ∈ Ext2,2p2−2p,

We see that no product of these can enter the column we care about. So we are done.
As a side note, in the case p = 3, we have 2p2 + 2p− 3 = 21, and h1b0 ∈ Ext3,24

is a non-trivial element with t− s = 2p2 + 2p− 3.
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