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Suppose we are given a continuous function f : [0, 1]→ [0, 1]. For example, the
graph of f may look like this:

(0, 0) (1, 0)

(0, 1) (1, 1)

One interesting thing to do is to randomly pick a point x ∈ [0, 1], keep applying
f , and see where we end up. We can visualize this process via a cobweb diagram,
drawn as follows:

(0, 0) (1, 0)

(0, 1) (1, 1)

x0

x∗
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We see that we converge towards the point x∗. In particular, if we start at x∗,
we stay there all the time — x∗ is a fixed point.

Some choices of f give more complicated behaviour. For example, in the following
diagram

(0, 0) (1, 0)

(0, 1) (1, 1)

x0

x1

x2

we see that in the limit, the point oscillates between x1 and x2. In this case, x1 and
x2 are 2-periodic points. Perhaps if we want to care about the limiting behaviour,
we should understand these periodic points.

Definition. Let f : [0, 1] → [0, 1] be a function. A point x ∈ [0, 1] is n-periodic if
fn(x) = x and fk(x) 6= x for 0 < k < n.

For example, for the following choice of f , we have a 3-periodic point:

(0, 0) (1, 0)

(0, 1) (1, 1)

We are now ready to state the desired theorem.
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Theorem. Let f : [0, 1] → [0, 1] be a continuous function. If f has a 3-periodic
point, then f has an n-periodic point for all n.

Let’s try to understand this. A good start might be to find a fixed point, i.e. a
1-periodic point. We can achieve this using the intermediate value theorem. From
now on, we fix a single continuous function f .

Lemma. Let I ⊆ [0, 1] be a (closed) subinterval. If f(I) ⊇ I, then I contains a fixed
point.

Proof. Write I = [a, b]. Then since f(I) ⊇ I, we in particular have a, b ∈ f(I). So
we can find a′, b′ ∈ I = [a, b] such that f(a′) = a and f(b′) = b. Then we have
f(a′)− a′ = a− a′ ≤ 0 and f(b′)− b′ = b− b′ ≥ 0. Since x 7→ f(x)− x is continuous,
we can find some c such that f(c)− c = 0, ie. c is a fixed point.

So we just need to find an interval I such that f(I) ⊇ I. We suppose the
three points in the 3-periodic orbit are x0 < x1 < x2. We may wlog assume that
f(x0) = x1, f(x1) = x2 and f(x2) = x0.

x0 x1 x2

Then f([x1, x2]) is a closed subinterval containing x0 and x2. So it in particular
contains [x1, x2]. So we have found a fixed point.

How about periodic points of larger period? If we want to find an n-periodic
point, we might try to look for fixed points of fn. This is in some sense a good
strategy, but it is not good enough. If we are given a fixed point fn, we know it has
period at most n. Perhaps it is secretly a fixed point of f . So we need to be a bit
more delicate than that.

We first introduce a convenient notation:

Notation. If I, J ⊆ [0, 1] are subintervals, we write I → J if f(I) ⊇ J .

We have seen that if I → I, then I contains a fixed point of f . The following is
the desired strengthening of the lemma.

Theorem. If I0 → I1 → I2 → · · · → In−1 → I0, then there exists an x ∈ I0 such
that fk(x) ∈ Ik for k = 1, . . . , n− 1 and fn(x) = x.

This is trivial if we don’t require fk(x) ∈ Ik, since fn(I) ⊇ I, and we can apply
the lemma. The (slightly) hard part is getting the points to lie in the Ik.

Proof. Note that if I, J ⊆ [0, 1] are closed subintervals with f(I) ⊇ J , then f−1(J)
is a disjoint union of closed intervals contained in I, each of which has image J . By
picking one of these, we get a subinterval K ⊆ I such that f(K) = J .
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Now if I0 → I1 → I2 → · · · → In−1 → I0, then we can find some Jn−1 ⊆ In−1
such that f(Jn−1) = I0. We still have f(In−2) ⊇ Jn−1, so we have a sequence

I0 → I1 → I2 → · · · → In−2 → Jn−1 → I0.

We can now replace In−2 with a Jn−2 as above, and keep going on to obtain a new
sequence

J0 → J1 → J2 → · · · → Jn−2 → Jn−1 → I0.

such that Jk ⊆ Ik, and f(Jk) = Jk+1 for all k. Then since fn(J0) = I0 ⊇ J0,
it follows that we can find some x ∈ J0 such that fn(x) = x. By assumption,
fk(x) ∈ Jk ⊆ Ik. So we are done.

We are essentially done with the proof. We set I1 = [x0, x1] and I2 = [x1, x2].
Then we have I2 → I2, I1 → I2 and I2 → I1. If we feel like drawing diagrams, we
can draw it as

I1 I2

Now we have a sequence of the form

I1 → I2 → I2 → · · · → I2 → I1

for any number of copies of I2. So for each n, we get some x ∈ I1 such that fn(x) = x,
and crucially, fk(x) ∈ I2 for all 0 < k < n. To see that x is actually of period n, we
need to check that fk(x) 6= x for 0 < k < n. To do so, we simply have to note that
I1 ∩ I2 = {x1}. Thus if fk(x) = x for some k, then x must be x1. We can check
manually that x1 does not satisfy the required property, since f2(x1) = x0 6∈ I2.
This concludes the proof.

This result is a special case of a more general theorem called Sharkovskii’s theorem.
The statement is as follows:

Theorem. Define an ordering on the naturals by

3 B 5 B 7 B · · · B

2 · 3 B 2 · 5 B 2 · 7 B · · · B

22 · 3 B 22 · 5 B 22 · 7 B · · · B

...
...

... · · · B

23 B 22 B 21 B 1

Then if f : [0, 1] → [0, 1] has an n-periodic point and n B m, then there is an
m-periodic point.
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One way to prove this is to use adapt the above strategy with some clever choices
of the intervals involved.

As a concluding remark, recall that we led ourselves into looking at periodic
points when we tried to understand the limiting behaviour as we keep iterating
f . In the first two examples, the fixed point and the 2-periodic points were stable,
namely if we start somewhere near the periodic points and keep applying f , the
point converges towards the fixed point or cycle. In general, there is no reason to
believe that the periodic points given by our theorem will be stable. This makes it
slightly less interesting — there is no way we can ”naturally” discover these periodic
points as we did at the beginning. We must have started at exactly the periodic
point to discover the periodicity.
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