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Throughout the talk, S is a quasi-compact and quasi-separated scheme.

Definition 0.1. Let SmS be the category of finitely presented smooth schemes over
S.

Since we impose the finitely presented condition, this is an essentially small
(1-)category.

The starting point of motivic homotopy theory is the ∞-category P(SmS) of
presheaves on SmS . This is a symmetric monoidal category under the Cartesian
product. Eventually, we will need the pointed version P(SmS)∗, which can be defined
either as the category of pointed objects in P(SmS), or the category of presheaves
with values in pointed spaces. This is symmetric monoidal ∞-category under the
(pointwise) smash product.

In the first two chapters, we will construct the unstable motivic category, which
fits in the bottom-right corner of the following diagram:

P(SmS) LNisP(SmS) ≡ SpcS

LA1P(SmS) LA1∧NisP(SmS) ≡ SpcA
1

S ≡ H(S)

LNis

L̃A1
LA1

L̃Nis

The first chapter will discuss the horizontal arrows (i.e. Nisnevich localization), and
the second will discuss the vertical ones (i.e. A1-localization).
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Afterwards, we will start “doing homotopy theory”. In chapter 3, we will discuss
the motivic version of homotopy groups, and in chapter 4, we will discuss Thom
spaces.

In chapter 5, we will introduce the stable motivic category, and finally, in chapter
6, we will introduce effective and very effective spectra.

1 The Nisnevich topology

Nisnevich localization is relatively standard. This is obtained by defining the Nis-
nevich topology on SmS , and then imposing the usual sheaf condition. Consequently,
the Nisnevich localization functor is a standard sheafification functor, and automati-
cally enjoys the nice formal properties of sheafification. For example, it is an exact
functor.

Definition 1.1. Let X ∈ SmS . A Nisnevich cover of X is a finite family of étale
morphisms {pi : Ui → X}i∈I such that there is a filtration

∅ ⊆ Zn ⊆ Zn−1 ⊆ · · · ⊆ Z1 ⊆ Z0 = X

of X by finitely presented closed subschemes such that for each strata Zm \ Zm+1,
there is some pi such that

p−1
i (Zm \ Zm+1)→ Zm \ Zm+1

admits a section.

Example 1.2. Any Zariski cover is a Nisnevich cover. Any Nisnevich cover is an
étale cover.

Example 1.3. Let k be a field of characteristic not 2, S = Spec k and a ∈ k×.
Consider the covering

A1 \ {0}

A1 \ {a} A1

x2 .

This forms a Nisnevich cover with the filtration ∅ ⊆ {a} ⊆ A1 iff
√
a ∈ k.

It turns out to check that something is a Nisnevich sheaf, it suffices to check it
for very particular covers with two opens.

Definition 1.4. An elementary distinguished square is a pullback diagram

U ×X V V

U X

p

i
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of S-schemes in SmS such that i is a Zariski open immersion, p is étale, and
p−1(X \ U)→ X \ U is an isomorphism of schemes, where X \ U is equipped with
the reduced induced scheme structure.

{U, V } forms a Nisnevich cover of X with filtration ∅ ⊆ X \ U ⊆ X.

Definition 1.5. We define SpcS = LNisP(SmS) to be the full subcategory of P(SmS)
consisting of presheaves that satisfy descent with respect to Nisnevich covers. Such
presheaves are also said to be Nisnevich local. This is an accessible subcategory of
P(SmS) and admits a localization functor LNis : P(SmS)→ SpcS .

Example 1.6. Every representable functor satisfies Nisnevich descent, since they in
fact satisfy étale descent. Note that these functors are valued in discrete spaces.

Lemma 1.7. Then F ∈ P(SmS) is Nisnevich local iff F (∅) ' ∗ and for every
elementary distinguished square

U ×X V V

U X

p

i

the induced diagram

F (X) F (V )

F (U) F (U ×X V )

is a pullback diagram.

Note that the “only if” direction is immediate from definition, and doesn’t require
the assumption on S.

Corollary 1.8. If

U ×X V V

U X

p

i

is an elementary distinguished square, then, when considered a square SpcS, this is
a pushout diagram.

In particular, this holds when {U, V } is a Zariski cover.
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2 A1-localization

Definition 2.1. A presheaf F ∈ P(SmS) is A1-local if the natural map F (X×A1)→
F (X×{0}) is an equivalence for all X. We write LA1P(SmS) for the full subcategory

of A1-local presheaves, and LA1∧NisP(SmS) = SpcA
1

S for the presheaves that are both
Nisnevich local and A1-local.

Therefore we get a square of accessible localizations

P(SmS) LNisP(SmS) ≡ SpcS

LA1P(SmS) LA1∧NisP(SmS) ≡ SpcA
1

S ≡ H(S)

LNis

L̃A1
LA1

L̃Nis

We also write the composite P(SmS)→ SpcA
1

S as LMot.

Remark 2.2. Note that if we think of each of these as subcategories, LA1 and L̃A1

are not the same functors.

Remark 2.3. A representable functor is usually not A1-local. Hence if X ∈ SmS ,

the resulting sheaf LMotX ∈ SpcA
1

S is usually not discrete. If X is already A1-local,
then we say X is A1-rigid. For example, Gm is A1-rigid.

Unlike LNis, the A1-localization functor LA1 is not a sheafification functor. Thus,
a priori, the only nice property of it we know is that it is a left adjoint. To remedy
for this, we describe an explicit construction of L̃A1 , and then observe that

Lemma 2.4. LMot ' (LNisL̃A1)ω.

The functor L̃A1 is better known as SingA1

.

Definition 2.5. Define the “affine n-simplex” ∆n by

∆n = Spec k[x0, . . . , xn]/(x0 + · · ·+ xn = 1).

This forms a cosimplicial scheme in the usual way.

For X ∈ P(SmS), we define SingA1

X ∈ P(SmS) by

(SingA1

X)(U) = |X(U ×∆•)|.

It is then straightforward to check that

Lemma 2.6. L̃A1 ' SingA1

.

Corollary 2.7. L̃A1 preserves finite products. Hence so does LMot.
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Example 2.8. Let E → X be a (Nisnevich-)locally trivial An-bundle. Then E → X
is an A1-equivalence in LNisP(SmS).

Example 2.9. We claim that P1 ∼= ΣGm = S1 ∧Gm ∈ SpcA
1

S . Here we are working
with pointed objects so that suspensions make sense.

Indeed, we have a Zariski open cover of P1 given by

A1 \ {0} A1

A1 P1

x−1

x

Since this is in particular an elementary distinguished square, it is also a pushout in
(SpcS)∗. Now apply LA1 to this diagram, which preserves pushouts since it is a left
adjoint. Since LA1A1 ' ∗ the claim follows.

If we “replace” only one of the A1’s with ∗, we see that this also says

ΣGm = A1/(A1 \ {0}).

In general, we have

Lemma 2.10.
An \ {0} ∼= Sn−1 ∧G∧nm

Pn/Pn−1 ∼= Sn ∧G∧nm .

It is convenient to introduce the following notation:

Definition 2.11. We define Sp,q = G∧qm ∧ (S1)∧(p−q) whenever it makes sense.

3 Homotopy sheaves

Naively, one would like to define the motivic homotopy groups of X ∈ (SpcA
1

S )∗ as
[Sp,q, X]∗. This is an abelian group. We can do better than that, and produce πp,qX
as a sheaf.

Definition 3.1. Let X ∈ SpcS . We define πNis
0 (X) to be the Nisnevich sheafification

of the presheaf of sets
U 7→ [U,X]SpcS .

If X ∈ (SpcS)∗ and n ≥ 1, define πNis
n (X) to be the Nisnevich sheafification of

the presheaf of groups
U 7→ [Sn ∧ U+, X](SpcS)∗ .

In general, if X ∈ P(SmS), we define πNis
n (X) = πNis

n (LNisX). Finally, we define

πA1

n (X) = πNis
n (LMotX).
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Corollary 3.2. If F → X → Y is a fiber sequence in (SpcA
1

S )∗, then there is a long
exact sequence

· · ·πA1

n+1Y → πA1

n F → πA1

n X → πA1

n Y → · · ·

of Nisnevich sheaves.

Proof. The forgetful functor SpcA
1

S → P(SmS) is a right adjoint, hence preserves

fiber sequences. So fiber sequences in SpcA
1

S are computed objectwise. Then note
that sheafification is exact.

Here it is essential that we did not include LA1 in the definition of πA1

n (X), since
LA1 is not exact.

Definition 3.3. If X ∈ P(SmS), we say X is A1-connected if the canonical map

X → S induces an isomorphism of sheaves πA1

0 X → πA1

0 S = ∗.

Given X ∈ SpcS , to check if X is A1-connected, it turns out it suffices to check
that πNis

0 (X) is trivial.

Proposition 3.4 (Unstable A1-connectivity). Let X ∈ P(SmS). Then the canonical
map

X → LMotX

induces an epimorphism

πNis
0 X → πNis

0 LMotX = πA1

0 X.

Proof. Since πNis
0 X → πNis

0 LNisX is an isomorphism, it suffices to show that πNis
0 X →

πNis
0 SingA1

X(U) is always an epimorphism. This follows by inspection.

The final property of πNis
n we note is that over a perfect field, πNis

n is unramified.
Roughly speaking, it says

πNis
n (X)(U)→ πNis

n (X)(Spec k(U))

is injective for any U ∈ SmS . We cannot exactly say this because Spec k(U) is in
general not smooth over S.

4 Thom spaces

Definition 4.1. Let E → X be a vector bundle. Then we define the Thom space
to be

Th(E) = E/E×.

Proposition 4.2.
Th(E) ∼= P(E ⊕ 1)/P(E).
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Theorem 4.3 (Purity theorem). Let Z ↪→ X be a closed embedding in SmS with

normal bundle νZ . Then we have an equivalence (in SpcA
1

S ).

X

X \ Z
→ Th(νZ).

Proof idea. The first geometric input is the construction of a bundle of closed
embeddings over A1 whose fiber over {0} is (νZ , Z) and (X,Z) elsewhere. This has
a very explicit description:

DZX = BlZ×S{0}(X ×S A1) \ BlZ×S{0}(X ×S {0}).

Indeed, the fiber over {0} is P(νZ ⊕OZ) \ P(νZ), which is canonically isomorphic to
νZ . (This construction is known as “deformation to the normal cone”)

The second step shows that in H(S), we have a homotopy pushout squares

νZ
νZ \ Z

Z
X

X \ Z

DZX

DZX \ Z × A1
Z × A1 DZX

DZX \ Z × A1

To prove this, one uses Nisnevich descent to reduce to the affine case.

5 Stable motivic homotopy theory

The stable motivic homotopy category is obtained by inverting P1 in H(S)∗:

SH(S) = H(S)∗[(P1)−1].

More generally, suppose we have a presentably symmetric monoidal ∞-category
C (i.e. C ∈ CAlg(PrL)) and X ∈ C. We can then define

StabX(C) = colim

(
C C C · · ·−⊗X −⊗X −⊗X

)
,

or equivalently

StabX(C) = lim

(
C C C · · ·(−)X (−)X (−)X

)
,

where these (co)limits are taken in the category of large categories (or equivalently
PrL/PrR).
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Theorem 5.1 (Robalo). If X is symmetric, i.e. the cyclic permutation on X⊗X⊗X
is homotopic to the identity, then StabX(C) ∈ CAlg(PrL) is symmetric monoidal,
and the natural map C → StabX(C) is universal among maps in CAlg(PrL) that
send X to an invertible object.

Note that there is always a map in CAlg(PrL) satisfying this universal property,
and StabX(C) always exists. The condition in the theorem ensures these two agree.

It is easy to check that P1 is indeed symmetric by elementary row and column
operations, so we can define

Definition 5.2. SH(S) = H(S)∗[(P1)−1].

As in the topological world, we have an adjunction

H(S)∗ SH(S)
Σ∞P1

Ω∞P1

Note that Σ∞P1 is by definition symmetric monoidal, and the fact that the tensor
product preserves colimits in both variables tells us how to compute the tensor
product in SH(S).

Definition 5.3. For E ∈ SH(S) and i, j ∈ Z, we define

πp,q(E) = πA1

0 (Ω∞P1(E ∧ S−p,−q)).

Of course, these also lead to homotopy groups given by the global sections of the
homotopy sheaves.

Definition 5.4. For E ∈ SH(S) and X ∈ (SmS)∗, and p, q ∈ Z, we define

Ep,q(X) = πp,q(Σ∞P1X ∧ E)

Ep,q(X) = [Σ∞P1X,Σp,qE]SH(S).

We shall briefly introduce three examples of motivic spectra.

Example 5.5. Motivic cohomology is represented by a spectrum HZ. If U is
smooth, motivic cohomology is equivalent to Bloch’s higher Chow groups:

HZp,q(U+) ∼= CHq(U, 2q − p).

There are multiple ways one can construct HZ, and I shall describe three. These
mimic how one constructs the classical HZ. These work over any perfect field, except
for the second which only produces the right spectrum when the characteristic is 0.
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1. Classically, we have the ∞-category Ch(Ab) of chain complexes of abelian
groups, and singular chains defines a natural map i∗ : Sp → Ch(Ab). This
admits a right adjoint i∗, and we can define HZ = i∗i

∗S.

In the motivic world, we can define the triangulated category of motives
DM(k), which receives a map SH(S)→ DM(k) and we can repeat the previous
paragraph.

2. Classically, we can construct HZ as an infinite loop space directly using the
Eilenberg–Maclane spaces, which one can in turn construct using the Dold–
Thom theorem as Sym∞(Sn). This works motivically as well.

3. Finally, we can define HZ = τ≤0S. Motivically, we can define HZ as the zero
slice of S, which we will discuss later.

Example 5.6. We can construct a motivic spectrum KGL that represents (homo-
topy) K-theory (which agrees with algebraic K-theory for sufficiently nice schemes).
This is obtained by constructing BGL (as the colimit of Grassmannians), and then
showing that ΩP1(BGL × Z) ∼= BGL × Z. We then have an explicit infinite loop
space.

Example 5.7. We can construct the algebraic cobordism spectrum MGL in the
same way as we produce MO or MU . There is a universal vector bundle γn → BGLn.
We then define

MGL = colim Σ−2n,−nTh(γn).

6 Effective and very effective motivic spectra

The category of (non-motivic) spectra admits a t-structure, where the connective
objects Sp≥0 is the subcategory generated by Sn for n ≥ 0 under (sifted) colimits.
In the motivic world, we have two kinds of spheres — S1 and Gm, which makes
everything bigraded. Thus, we can have different notions of connectivity depending
of which spheres we use.

Definition 6.1. Let SHeff(S) be the smallest stable subcategory (closed under
direct sums) of SH(S) containing all Σ∞P1X+ for X ∈ SmS and closed under colimits.
This is the category of effective spectra.

The inclusion G∧nm ∧ SH
eff(S) ↪→ SH(S) admits a right adjoint fn. This defines

the slice filtration
· · · → fn+1E → fnE → fn−1E → · · · .

Definition 6.2. The n-slice of E, denoted snE, is defined by the cofiber sequence

fn+1E → fnE → snE.
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On the other hand, we can only allow for non-negative powers of Si but include
negative powers of Gm. This in fact defines a t-structure on SH(S).

Definition 6.3. Let SH(S)≥0 be the subcategory of SH(S) generated by Σ∞P1X+ ∧
G−qm under extensions and colimits.

Theorem 6.4. This forms part of a t-structure on SH(S), called the homotopy
t-structure.

In the case of a perfect field, but not in general, we can characterize the homotopy
t-structure by the homotopy sheaves.

Theorem 6.5. If S = Spec k and k is a perfect field, then

SH(S)≥0 = {E ∈ SH(S) | πp,q(E) = 0 whenever p− q < 0}
SH(S)≤0 = {E ∈ SH(S) | πp,q(E) = 0 whenever p− q > 0}

Finally, we can intersect these two.

Definition 6.6. We define

SHveff(S) = SHeff(S) ∩ SH(S)≥0.

Equivalently, it is the full subcategory of SH(S) that generated by Σ∞P1X+ and under
colimits. This is the category of very effective spectra.

Since the smash product preserves colimits and X+ ∧ Y+ = (X×)+, we see that

Proposition 6.7. SH(S)veff is closed under the smash product.

Example 6.8. MGL is very effective. To show this, we have to show that for
γn → BGLn the universal vector bundle, the Thom spectrum Σ−2n,−nΣ∞P1Th(γn) is
in very effective. This is true for rank n vector bundles in general, since it is true for
trivial vector bundles, and vector bundles are locally trivial.
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