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1 Sine

The sine function, as we learnt in high school, is closely related to the arc length of
the circle. We will describe this in a slightly funny way. Consider the circle of unit
diameter with center (0, 1

2 ):

x

y

r

θ

By some elementary geometry, we find that r = sin θ. The arc length s is given by

(ds)2 = (dr)2 + (r dθ)2.

We have

dθ =
dr

cos θ
=

dr√
1− sin2 θ

=
dr√

1− r2
.

So we can write the line element as

ds =
1√

1− r2
dr
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Thus, the arc length function is given

s(r0) =

∫ r0

0

1√
1− r2

dr.

This is, of course, the familiar arcsine function, inverse to the even more familiar
sine function.

Note that here we have a square root sitting inside the integrand. For the arc
length function, we simply always take the positive square root. However, if we want
to extend arcsine and sine to complex functions by replacing the integral with a
contour integral, then we cannot always stick with the above choice.

The solution is to instead think about the Riemann surface of the function 1√
1−r2 ,

which is given by the circle r2 + t2 = 1:

r

t

We can then write the integral as

s(z) =

∫ z

0

dr

t
,

where z is now viewed as a point in R = {(r, t) ∈ C2 : r2 + t2 = 1}. This integral
depends not only on z, but also on the path taken from 0 to z. In general, it is
well-defined only up to a period, namely the integral of dr

t around a closed loop.
Thus, the inverse function, namely sine, is a singly-periodic function.

It is important to note that this circle is different from the previous circle. When
we discuss the Lemniscate sine soon, we will work with two rather different shapes.

Before we end the section, note that to study the sine function, which is a function
defined on R, it is often convenient to pick an isomorphism between R and P1 given
by stereographic projection.
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(r, t)

u

This is given by the formulae

r =
2u

1 + u2
, t =

1− u2

1 + u2

Substituting in, we find

dr√
1− r2

=
1√

1−
(

2u
1+u2

)2 · 2(1 + u2)− 4u2

(1 + u2)2
du =

1 + u2

1− u2
· 2(1− u2)

(1 + u2)2
du =

2 du

1 + u2
,

which is the integral of a nice, rational function.

2 The Lemniscate Sine

The lemniscate sine is an example of an elliptic integral. Elliptic integrals first arose
when people studied problems analogous to the above but for ellipses, and integrals
that looked similar were called elliptic integrals. We shall not be interested in ellipses
here, because they are less interesting. Fix two foci F± = (±a, 0) ∈ R2, and consider
the locus of all points P = (x, y) such that

‖P − F+‖ · ‖P − F−‖ = ‖0− F+‖ · ‖0− F−‖.

x

y

r

θ
a−a
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Explicitly, this is given by

((x− a)2 + y2)((x+ a)2 + y2) = a4.

Equivalently, this is
(x2 + y2)2 = 2a2(x2 − y2).

It is convenient to set a = 1√
2
, and using polar coordinates, this equation becomes

r2 = cos 2θ.

We then have

dθ =
−r

sin 2θ
dr =

−r√
1− r4

dr.

Thus, the line element is

ds =
1√

1− r4
dr,

and we have a lemniscate arcsine

s(r0) =

∫ r0

0

1√
1− r4

dr

with inverse sl(s). Again, we want to promote this to a complex function. From now
on, we will replace r with x, since explicit coordinates for the lemniscate itself will
not be of much use. Then the associated Riemann surface is given by

R = {(x, y) ∈ C2 : y2 = 1− x4}.

Then

s =

∫
dx

y
.

Observe that this surface is singular at infinity. Which is bad. However, we can blow
this up at infinity to resolve the singularity, and since we are working with curves,
any rational map is automatically a morphism, and so we don’t have to think about
infinity much.

A key observation is that projection onto the x coordinate exhibits R as a double
cover of P1 branched at four points (it cannot be branched at infinity since there
is always an even number of branch points), and so by Riemann-Hurwitz, R is a
torus. This means R admits a holomorphic and non-vanishing differential, and one
can check dx

y is one.
Since R is topologically a torus, its homology is generated by two loops, and s

will be defined up to the integrals of those loops, which we expect to be an integer
lattice Λ in C. We will explicitly identify this lattice soon. What this means is that
s actually gives an explicit identification R

∼→ C/Λ. Surjectivity is automatic, and
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injectivity is given by the Abel–Jacobi theorem, since if s(p) = s(p′), then p− p′ is
killed by the Abel–Jacobi map, and hence p ∼ p′. This is possible only if p = p′ as
R is not P1.

To understand the lattice, we pick two generated loops as follows:

Re

Im

×

×

××

The horizontal loop has a very geometric interpretation, since the path lies entirely
within the real axis. Indeed, this just corresponds to integrating the line element
along the whole lemniscate, and the integral is just the total arc length of the
lemniscate, 2Ω. It is written this way so that the length of half of the lemniscate is
Ω, which is exactly the contribution we get if we go around the branch point at 1
and then return to the “origin” (of course, on the Riemann surface, this is a distinct
point that the origin, as it is on the other sheet).

It remains to understand what happens when we go around the branch point at
i. This follows from the simple observation that the integrand is invariant under
x 7→ ix, while dx gets multiplied by i under this operation. So we find that

s(iz) = is(z).

So it follows that the other homology class has an integral of (1 + i)Ω. Thus,

Λ = 〈2Ω, (1 + i)Ω〉.

The inverse function sl is then a double periodic function with period lattice Λ with
zeroes given by Λ ∪ (Ω + Λ).

3 Complex Multiplication

We have already observed above that

sl(iz) = i sl(z).

We can think of this as follows — we fix O = (0, 1) as our basepoint of R, which
corresponds to the point 0 ∈ C/Λ. Then multiplication by i is an automorphism of
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C/Λ, which should then descend to an automorphism of R. This formula gives a very
concrete description of what the induced map on R is — it is simply multiplication
by i in the x coordinates!

We might hope that there are more formulas of this sort. For example, an addition
formula like

sin(z + w) = sin z
√

1− sin2 w + sinw
√

1− sin2 z

would be helpful. To look for such formulae, we may try playing around with
some substitutions and see what we get. Previously, for the circle, we had the
substitution x = 2u

1+u2 that turned things into rational functions. We might try a

similar substitution. If we want 1− x4 to become a perfect square and we can get
rid of the radical, we should set

x2 =
2u2

1 + u4
.

Doing the substitution yields

dx√
1− x4

=
1 + u4

1− u4
· 4u(1− u4)

(1 + u4)2
· du

2x
=

√
2 du√

1 + u4

This looks quite like what we originally had, except for the change in sign below.
Thus, we put u = ζ8v, and then we get

dx√
1− x4

=
(1 + i) dv√

1 + v4
.

Integrating and putting in the right bounds, we find that

s

(
(1 + i)v0√

1− v4
0

)
= (1 + i)s(v0).

In other words, we have

sl((1 + i)z) =
(1 + i) sl(z)√

1− sl(z)4
.

Taking complex conjugates, we get

sl((1− i)z) =
(1− i) sl(z)√

1− sl(z)4
.

Crucially, since (1 + i)(1− i) = 2, we can iterate these two formulas to obtain

sl(2z) =
2 sl(z)

√
1− sl(z)4

1 + sl(z)4
.
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The presence of these
√

1− sl(z)4 may be a bit off-putting, but there is no reason
to fear them — they are simply the y coordinates of R, which we should think of
as the lemniscate arcsine of z. The ambiguity in sign is fixed by what happens in a
small neighbourhood of 2, where we choose

√
1− sl(z)4 to be positive whenever z is

small and positive.
It is an elementary exercise to iterate these formulas to obtain

sl(2(1 + i)z) =
2(1 + i) sl(z)

√
1− sl(z)4(1 + sl(z)4)

1− 6 sl(z)4 + sl(z)8

sl(4z) =
4 sl(z)

√
1− sl(z)4(1 + sl(z)4)(1− 6 sl(z)4 + sl(z)8)

1 + 20 sl(z)4 − 26 sl(z)8 + 20 sl(z)12 + sl(z)16

Given the duplication formula for sl(2z), it is reasonable to guess that we might have
an addition formula of the form

sl(z + w) =
sl(z)

√
1− sl(w)4 + sl(w)

√
1− sl(z)4

1 + sl(z)2 sl(w)2
,

from which we can deduce all the above formulae using that sl(iz) = i sl(z).
A poor man’s way of proving the formula would be to set w = c − z for some

constant c, and then differentiate the right-hand side to see it is constant. There are
more modern ways of doing so, but is out of the scope of this discussion.

We should think of this formula as transporting the obvious addition structure
on C/Λ to give an addition rule on R.

4 Torsion Points

The duplication formulae above allow us to consider the (1 + i)n-torsion points of
R, i.e. the points such that acting by (1 + i)n sends the point back to the origin.
There is a slight subtlety here, due do the fact that we are working with sl, which is
the composition C/Λ → R

π→ P1. If sl(z) = 0, then the corresponding point in R
need not be the origin. It could be the other point (0,−1). Fortunately, we already
know exactly which point gets mapped to (0,−1), namely Ω, which is the unique
(1 + i)-torsion point of C/Λ.

We might also worry about the two points at infinity, which is not adequately
captured by our formula. Observing that

sl((1 + i)z) =
(1 + i) sl(z)√

1− sl(z)4
,

and the fact that sl(Ω
2 ) = 1, we know that the two points at infinity are 1±i

2 Ω, which
are the remaining 2-torsion points. These let us conclude
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Proposition. sl((1 + i)nz) = ∞ iff z is a (1 + i)n+2-torsion point but not an
(1 + i)n+1-torsion point.

This lets us compute the higher torsion points:

n (1 + i)n-torsion points

0 (0, 1)
1 (0,−1)
2 ∞,∞
3 (±1, 0), (±i, 0)

4 (ζk8 ,±
√

2) k = 1, 3, 5, 7

5 (ik
4
√

3±a 2
√

2,±b
√

2∓a 2
√

2) k = 0, 1, 2, 3

Finding higher-order torsion points will require advanced WolframAlpha techniques.
Recall that we can find ray class fields of Q(i) by adjoining the torsion points of

the curve with CM by Q(i). We need to first identify a Weber function, which is
given by quotienting out R by the automorphism group. The automorphism group
multiplies by powers of i, and so we find that h(x, y) = y is a perfectly good Weber
function on R. So we find that

1. The ray class field modulo (1 + i)3 is still just Q(i).

2. The ray class field modulo (1 + i)4 = (4) is Q(i,
√

2).

3. The ray class field modulo (1 + i)5 is Q(i,
√

2 + 2
√

2).

We can compute the ray class groups explicitly, using the definition of the ray class
group, and see that they match. Observe that since Q(i) has class number 1, we can
decompose

A×Q(i) =
Q(i)×

µ4
× C× ×

∏
v-∞

O×v ,

and so

CQ(i) =
C× ×

∏
v-∞O×v

µ4
.

The ray class group modulo m = (1 + i)k is then given by

Clm =
O×(1+i)

µ4 × (1 + (1 + i)kO(1+i))
=

(
Z[i]

(1 + i)k

)×/
µ4.

The invertible elements in Z[i]/(1 + i)k are exactly those (1 + i) does not divide, i.e.
those with odd norm. Thus, we see that

Cl(1+i)3 = 0, Cl(1+i)4 = C2, Cl(1+i)5 = C2 × C2,

in agreement with above (exercise: find the other subfields on Q(i,
√

2 + 2
√

2)).
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