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On a closed Riemannian manifold, there are three closely related objects we can
study:

(i) Topological invariants such as the Euler characteristic and the signature;

(ii) Indexes of differential operators; and

(iii) Differential forms on the manifold.

(i) and (ii) are mainly related by the Hodge decomposition theorem — the
signature and Euler characteristic count the dimensions of the cohomology groups,
and Hodge theory says the cohomology groups are exactly the kernels of the Laplacian.
This is explored briefly in Appendix A.

(i) and (iii) are related to each other via results such as the Gauss–Bonnet theorem
and the Hirzebruch signature theorem. The Gauss–Bonnet theorem says the Euler
characteristic of a surface is the integral of the curvature; The Hirzebruch signature
theorem says the signature is the integral of certain differential forms called the
L-genus, given as a polynomial function of the Pontryagin forms.

(ii) and (iii) can also be related directly to each other, and this connection is what
I would call “index theory”. The main theorem is the Atiyah–Singer index theorem,
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and once we have accepted the connection between (i) and (ii), we can regard the
Gauss–Bonnet theorem and the Hirzebruch signature theorem as our prototypical
examples of index theory.

I wish to make the point that (i) and (ii) are purely global invariants, in the sense
that we can only make sense of them when we are given the manifold as a whole.
On the contrary, the construction in (iii) is purely local. As long as we construct the
Pontryagin form using Chern–Weil theory, the differential forms are globally defined
up to equality, and not just up to exact forms.

Thus, it makes sense to ask the following question — if we are given a compact
Riemannian manifold with boundary, we can still integrate the differential form we
had above. The signature still makes sense, and we can ask how these two relate.

We do not expect them to be equal. In the case of a surface M with boundary,
Gauss–Bonnet says

χ(M) =

∫
M

K dx+

∫
∂M

σ ds,

where K is the Gaussian curvature and σ is the geodesic curvature of the boundary.
However, if the neighbourhood of the boundary is isometric to the product ∂M×[0, 1],
then the boundary term vanishes, and so the Euler characteristic is just the integral
of the curvature.

For the signature, even if we assume the boundary is isometric to a product, the
integral of the L-genus still does not give the signature. However, the difference
between the two is entirely a function of the Riemannian manifold ∂M . Indeed, if
we have two manifolds M,M ′ with the same boundary, and both are isometric to
products near the boundary, then we can glue them together along the boundary.
Since both the signature and the integral of the L-genus add up when we glue
manifolds along boundaries, the error terms of M and M ′ must be the same.

It turns out this error term is a spectral invariant. We can define an elliptic
self-adjoint operator A on Ω∗(∂M) which, up to some signs, is d ∗+ ∗ d. We can
define

η(s) =
∑
λ6=0

signλ |λ|s,

where we sum over the eigenvalues of A with multiplicity. This converges when Re(s)
is large, and has a meromorphic continuation to all of C. We will show that the error

term is then η(0)
2 .

Our strategy to understanding this is to employ the heat kernel, which is a way
of understanding the connection between (ii) and (iii). In Section 1, we discuss the
classical heat equation and construct the heat kernel on a general closed manifold.
From that particular construction, it will be evident how the heat kernel is related
to the index of a differential operator. In Section 2, we provide an alternative
construction of the heat kernel of the Laplace–Beltrami operator, which gives us
some precise estimates. In Section 3, we use the estimates to construct a heat kernel
for the Laplacian on open manifolds. This section is merely an example of what one
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can do with the estimates, and the results are not used anywhere else. In Section 4,
we use our results in Section 1 and 2 to prove Hirzebruch’s signature theorem.

In Section 5, we begin to study the signature on a manifold with boundary and
connect this to the index of an operator, which we of course hope to calculate using
the heat kernel. This is rather more complicated than what one might initially think.
In Section 6, we study the heat kernel on a manifold of the form N × R≥0, which
we think of as the collar neighbourhood of a manifold. In Section 7, we glue the
results of the previous chapter with results on the interior established early on to
understand the heat kernel on manifolds with boundary, and finally apply this theory
to prove the theorem stated above.

To give credit where credit is due, Section 2 is essentially lifted straight out of
[Pat71, Section 4]; Section 3 out of [Dod83]. The rest of the work is cherry-picked
out of [ABP73] and [APS75] (see also [ABP75] for an errata to [ABP73]).

1 The Heat Equation

1.1 The Classical Heat Equation

In the most classical sense, the heat equation is the following partial differential
equation on Rd × R: (

∂

∂t
−
∑ ∂2

∂x2
i

)
f = 0.

This describes the dispersion of heat over time, where f(x, t) is the temperature at
position x at time t. To simplify notation, we write

∆ = −
∑ ∂2

∂x2
i

.

Green’s strategy to solving such a PDE is to find a solution to the PDE with
initial condition

f(x, 0) = δ(x).

In this case, we can find it very explicitly to be

f(x, t) =
1

(4πt)d/2
exp

(
−|x|

2

4t

)
.

We call this Ht(x). Then given any bounded continuous function f0, it is easy to see
that the solution to the initial value problem

f(x, 0) = f0(x)

is simply given by

f(x, t) =

∫
Rd

Ht(x− y)f0(y) dy.
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The fact that we are allowed to write Ht(x− y) at all uses the fact that we are
working on Rd and our system has translational symmetry. In general, if we work
on an arbitrary manifold M , we would seek a function Ht(x, y) on M ×M × (0,∞)
such that the solution to the initial value problem f(x, 0) = f0(x) is

f(x, t) =

∫
M

Ht(x, y)f0(y) dy.

The function Ht(x, y) then satisfies(
∂

∂t
+ ∆x

)
Ht(x, y) = 0.

This Ht(x, y) is also called the heat kernel, or fundamental solution, and we will
mostly use these terms interchangeably. (It is also called a Green’s function, but we
will not use this name)

The heat kernel also shows up in a closely related problem. Suppose we wanted
to solve instead (

∂

∂t
−∆

)
f = F (x, t)

for some (bounded continuous) forcing term F . It turns out the solution can also be
expressed in terms of H as

f(x, t) =

∫
M

Ht(x, y)f0(y) dy +

∫ t

0

dτ

∫
M

Ht−τ (x, y)F (y, τ) dy,

which is again not difficult to check. The interpretation of this is that we can think
of the forcing term as adding a new initial condition at each point τ in time. This is
known as Duhamel’s principle.

Especially from a physical perspective, it is interesting to note that the heat
equation propagates information at infinite speed. In other words, for any t > 0,
the value of f(x, t) depends on the values of f0 everywhere. This is in contrast with,
for example, the wave equation, where information only propagates at finite speed.
Nevertheless, in the limit t → 0, the asymptotic behaviour is purely local, as the
contribution of the points a finite distance away decays exponentially as t→ 0.

On a general Riemannian manifold, we can formulate the same problem, replacing
∆ by the Laplace–Beltrami operator. The Laplace–Beltrami operator (or Laplacian
for short) can in fact be defined for all p-forms. Write Ω∗ =

⊕
p Ωp.∗ Then the

exterior derivative defines a map

d: Ω∗ → Ω∗.

∗ We will abuse notation and write Ωp for both
∧p T ∗M and its global sections
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There is an L2 inner product on p-forms coming from the metric, and so d has a
formal adjoint d∗ : Ω∗ → Ω∗ that lowers degree by 1. The Laplace–Beltrami operator
is given by

∆ = (d + d∗)2 = d∗d + dd∗ : Ωp → Ωp.

In the case of p = 0, the Laplace–Beltrami operator is simply given by d∗d, and in
local coordinates with metric g, we can write this as

∆f =
1√

det g
∂i(
√

det g gij∂jf).

1.2 The General Heat Equation

We can further generalize our previous problem and replace ∆ by any elliptic self-
adjoint operator. We will soon specialize to the case of the Laplace–Beltrami operator,
but this section is completely general.

Our original motivation was to understand the index of operators, so let us start
from there. Suppose we are given a compact Riemannian manifold M and E,F
Hermitian vector bundles on M . We are also given an elliptic differential operator
D : Γ(E)→ Γ(F ) over M with formal adjoint D∗ : Γ(F )→ Γ(E) (in the case of the
Laplace–Beltrami operator, we have D = D∗ = d + d∗ and E = F = Ω∗).

Similar to the case of the Laplace–Beltrami operator, we define

∆E = D∗D : Γ(E)→ Γ(E)

∆F = DD∗ : Γ(F )→ Γ(F ).

Then ker ∆E = kerD and ker ∆F = kerD∗. So we have

indexD = dim kerD − dim cokerD

= dim kerD − dim kerD∗

= dim ker ∆E − dim ker ∆F .

This is the form of the index that will be of interest to us.
By analogy with the classical heat equation, we consider the equation(

∂

∂t
+ ∆E

)
f = 0

on E × (0,∞)→M × (0,∞), with t ∈ (0,∞).
Hodge theory gives us an easy way to solve this, at least formally. We can

decompose

L2(E) =
⊕
λ

Γλ(E),
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where Γλ(E) is the λ-eigenspace of ∆E . The spectral theorem tells us the eigenvalues
are discrete and tend to infinity. Let {ψλ} be an orthonormal eigenbasis. Then we
can write a general solution as

f(x, t) =
∑
λ

cλe
−λtψλ(x)

for some constants cλ.
If we want to solve this with initial condition f0, i.e. we require f(−, t)→ f0 as

t→ 0 in L2, then we must pick†

f(x, t) =
∑
λ

e−λtψλ(x)〈ψλ, f0〉.

Thus, we can write the heat kernel as

Ht(x, y; ∆E) =
∑
λ

eλtψλ(x)ψλ(y)T .

Then we have

f(x, t) =

∫
M

Ht(x, y; ∆E)f0(y) dy.

We remark that for each fixed t, the heat kernel Ht(x, y) is a section of the exterior
product E � E∗ →M ×M .

To ensure the sum converges, we need to make sure the eigenvalues grow sufficiently
quickly. This is effectively Weyl’s law, but we for our purposes, we can use a neat
trick to obtain a weaker bound easily.

Lemma 1.1. If ∆ is any self-adjoint elliptic differential operator, then there is a
constant C and an exponent ε such that for large Λ, the number of eigenvalues of
magnitude ≤ Λ is at most CΛε.

Proof. To simplify notation, we assume ∆ acts on the trivial line bundle. By replacing
∆ with its powers, we may assume that the order d of ∆ is large enough such that
we can apply the Sobolev (and regularity) bound

‖f‖C0 ≤ C ′‖f‖d ≤ C(‖∆f‖L2 + ‖f‖L2).

In particular, if ψ is an eigenfunction of eigenvalue at most Λ, then we can bound

‖ψ‖C0 ≤ C(1 + Λ)‖ψ‖L2 .

Let {ψλ} be an orthonormal eigenbasis. Then for any constants aλ and fixed x ∈M ,
we have ∣∣∣∣∣∣

∑
|λ|≤Λ

cλψλ(x)

∣∣∣∣∣∣ ≤ C(1 + Λ)

∑
λ≤Λ

|cλ|2
1/2

.

† This requirement is rather weak. We will later upgrade this to a pointwise convergence
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We now pick cλ to be the numbers ψ̄λ(x), recalling that we have fixed x. Then

∑
|λ|≤Λ

ψ̄λ(x)ψλ(x) ≤ C(1 + Λ)

∑
λ≤Λ

ψ̄λ(x)ψλ(x)

1/2

.

Equivalently, we have ∑
|λ|≤Λ

ψ̄λ(x)ψλ(x) ≤ C2(1 + Λ)2.

Integrating over all of M , the left-hand side is just the number of eigenvalues of
magnitude ≤ Λ. So we are done.

Elliptic regularity lets us bound the higher Sobolev norms of Ht as well, and so
we know Ht is in fact smooth by Sobolev embedding.

It is fruitful to consider the “time evolution” operator e−t∆E that sends f0 to
f(−, t) defined above. This acts on the λ eigenspace by multiplication by e−λt. Thus,
the trace is given by

ht(∆E) ≡ tr e−t∆E =
∑
λ

e−λt dim Γλ(E).

The key observation is that D gives an isomorphism between the λ eigenspace of
∆E and the λ eigenspace of ∆F as long as λ > 0, and the 0 eigenspaces are exactly
the kernels of ∆E and ∆F . So we have an expression

index ∆E = ht(∆E)− ht(∆F )

for any t > 0.
This expression is a very global one, because ht(∆E) depends on the eigenfunctions

of ∆E . However, the fact that e−λ∆E is given by convolution with Ht(x, y; ∆E) gives
us an alternative expression for the trace, namely

ht(∆E) =

∫
M

Ht(x, x; ∆E) dx.

This is still non-local, but we will later find that the asymptotic behaviour of
Ht(x, x; ∆E) as t→ 0 is governed by local invariants. Since the index is independent
of t, we can take the limit t→ 0 and get a local expression for the index.

Example 1.2. Take the flat torus T d = Rd/Zd, and pick D = d: Ω0(M)→ Ω1(M),
so that ∆ is the classical Laplacian

∆ = −
∑ ∂2

∂x2
i

.
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The eigenvectors are given by e2πix·ξ for ξ ∈ Zd with eigenvalue 4π2|ξ|2. So the heat
kernel is

Ht(x, y) =
∑
ξ∈Zd

e−4πt|ξ|2e2πi(x−y)·ξ =

d∏
i=1

∞∑
k=−∞

e−4πtk2+2πi(xi−yi)k.

Number theorists may wish to express this in terms of the Jacobi theta function:

Ht(x, y) =

d∏
i=1

ϑ(xi − yi; 4it).

We can explicitly evaluate the trace to be

ht =

∫
Td

Ht(x, x) dx =

( ∞∑
k=−∞

e−4πtk2

)d

In the limit t→ 0, we can replace the sum with the integral to get

ht ∼
(∫ ∞
−∞

e−4πtk2 dk

)d
= (4t)−d/2.

2 Heat Kernel for the Laplacian

In the previous section, our solutions f(x, t) had the property that f(−, t)→ f0 in
L2. One might hope that, for example, if f0 is continuous, then this converges in C0.
Another shortcoming of our previous approach is that we have no control over what
Ht looks like as a function as the whole construction is manifestly global.

In this section, we will construct the heat kernel via an alternative method. This
method involves starting with an initial “guess” of what the heat kernel should be.
We then show that if our initial guess is “good enough”, then there is an iterative
procedure that gives us the actual heat kernel. Moreover, this iterative procedure is
sufficiently explicit that we can relate the asymptotic behaviour of Ht as t→ 0 back
to that of our original guess.

We will now restrict to the case of the Laplace–Beltrami operator, since we can
use the explicit solution for Rd as an inspiration for our initial guess. We fix a p and
consider the Laplace–Beltrami operator on Ωp.

Lemma 2.1. For any N , there exists a smooth section Kt(x, y) = Kt(y, x)T ∈
Γ(Ωp � (Ωp)∗) such that

(i)
Kt(x, y)→ δ(x, y) as t→ 0.
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More precisely,

lim
t→0

∫
M

Kt(x, y)α(y) dy = α(x) in C0

for all continuous α ∈ Ωp(M).

(ii) There is a constant C and an exponent N such that∣∣∣∣( ∂

∂t
−∆x

)
Kt(x, y)

∣∣∣∣ ≤ CtN
for all x, y ∈M .

(iii) For any other continuous section Ft(x, y) ∈ C0(Ωp � (Ωp)∗ × [0,∞)), the
convolution

(K ∗ F )t(x, y) =

∫ t

0

ds

∫
M

dz Kt−s(x, z)Gs(z, y)

is a C2 section of Ωp � (Ωp)∗ × (0,∞).

To motivate why one should care about the convolution, notice that Duhamel’s
principle essentially says that the heat kernel H satisfies(

d

dt
+ ∆x

)
H ∗ F = F

for all F . The condition that the convolution is C2 is a technical point that will be
useful later on.

Proof. Write r(x, y) for the geodesic distance between x, y ∈M . The very first naive
guess for Kt(x, y) might just be

1

(4πt)d/2
e−r

2/4t.

This definitely satisfies (i). To see how good an attempt we made, we compute
∂
∂t + ∆x of this.

To do so, we fix a y ∈ M and express x in geodesic polar coordinates about y.
Then there is a formula

∆x(F (r)α) =

(
d2F

dr2
+
d− 1

r

dF

dr
+

1

2g

dg

dr

dF

dr

)
α+

2

r

dF

dr
∇r ∂

∂r
α+ F∆xα

where g is the determinant of the metric (note that r ∂∂r is defined at r = 0, but ∂
∂r

is not, hence the funny notation). So we find that(
∂

∂t
+ ∆x

)
e−r

2/4t

(4πt)d/2
= − r

4gt

dg

dr

e−r
2/4t

(4πt)d/2
.
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If we were in flat space, then dg
dr = 0, and so this is in fact a legitimate fundamental

solution, as one would expect. However, when dg
dr 6= 0, then we can’t quite bound

this as t→ 0.
To solve this, we introduce some correction terms, which are small enough to

preserve the property (i). We shall find ui(x, y) ∈ Γ(Ωp � (Ωp)∗) with f0(x, x) = I
such that

KN,t(x, y) =
e−r

2/4t

(4πt)d/2

(
N∑
i=0

tiui(x, y)

)
satisfies the equality(

∂

∂t
+ ∆x

)
KN
t (x, y) =

e−r
2/4t

(4πt)d/2
tN∆xuN (x, y).

The precise shape of the right-hand side does not matter. It is just what happens
to be convenient. The point is that the exponent of t is N − d

2 , which is eventually
positive. Then we simply have to take K = KN for large enough N (note that this
N is different from the exponent N in (ii) by d

2 ). Actually, we will only succeed in
finding uN in a neighbourhood of the diagonal, since we work in geodesic polars.
But we can simply take K = KNϕ(x, y), where ϕ is a bump function supported near
the diagonal. ((iii) is left as an exercise)

To find the ui, we assume KN is of the given form, and compute(
∂

∂t
−∆x

)
KN,t(x, y) =

e−r
2/4t

(4πt)d/2

N∑
i=0

[(
i

t
+

r

4gt

dg

dr

)
tiui(x, y) + ti−1∇r ∂

∂r
ui + ti∆xui(x, y)

]
.

To obtain the desired result, we need the coefficient of e−r2/4t

(4πt)d/2
ti−1 to vanish for

i ≤ N . So we need to inductively solve(
i+

r

4g

dg

dr

)
ui(x, y) +∇r ∂

∂r
ui(x, y) = ∆xui−1(x, y).

The diligent reader will observe that the left-hand side is exact, so we can write this
as

∇r ∂
∂r

(
rig1/4ui(x, y)

)
= rig1/4∆xui−1(x, y).

The existence and uniqueness of a local solution then follows easily (one has to be
slightly careful about r = 0, where the original equation gives an initial condition
iui = ∆xui−1).
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For future reference, we note that ∇r ∂
∂r

= 0 when r = 0, so

Kt(x, x) = const ·
N∑
i=0

ti−d/2ui(x, x),

where ui(x, x) is a rational function in gij and its derivatives.
We will now fix an N large enough and take K to be the function given by the

previous lemma.
To find the actual fundamental solution, we have to understand the convolution

a bit better. Recall that we expect a genuine fundamental solution H to satisfy(
d
dt + ∆x

)
(H ∗ F ) = F . Using the fact that Kt(x, y) → δ(x, y) as t → 0, we can

calculate

Lemma 2.2. (
∂

∂t
+ ∆x

)
(K ∗ F ) = F +

[(
∂

∂t
+ ∆x

)
K

]
∗ F.

So at least formally, the heat kernel should be given by

H =

∞∑
m=0

(−1)mK ∗
[(

∂

∂t
+ ∆x

)
K

]∗m
.

Barring convergence issues, the formula above also shows that
(

d
dt + ∆x

)
H = 0.

To check convergence, the naive bound

‖F ∗G‖L∞ ≤ Ct vol(M)‖F‖L∞‖G‖L∞

is not quite enough. We set

G =

(
∂

∂t
+ ∆x

)
K.

We then have ‖Gt‖L∞ ≤ CtN . We claim that

‖G∗(j+1)
t ‖L∞ ≤

Cj+1 vol(M)j

(N + j) · · · (N + 2)(N + 1)
tN(j+1)+j .

The terms in the denominator are the interesting bits that come from doing the
bound more carefully. They ensure the sum above converges by the ratio test. This
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is a standard inductive calculation

|G∗(j+1)
t (x, y)| ≤

∫ t

0

ds

∫
M

dz |Gt−s(x, z)||G∗js (z, y)|

≤
∫ t

0

ds

∫
M

dz CtN · Cj vol(M)j−1

(N + j − 1) · · · (N + 1)
sNj+j−1

≤ Cj+1 vol(M)j

(N + j − 1) · · · (N + 1)
tNj

∫ t

0

sN+j−1 ds

=
Cj+1 vol(M)j

(N + j) · · · (N + 1)
tN(j+1)+j .

Adding these up and using the ratio test, we find that

H = K +K ∗
∞∑
m=1

(−1)G∗m

converges, and we have the following theorem:

Theorem 2.3. There is a fundamental solution Ht(x, y), and it satisfies

Ht(x, y) = Kt(x, y) +O(tN+1).

In particular, we have
Ht(x, y)→ δ(x, y) as t→ 0.

From this, we can read off the leading term of Ht(x, x) as t → 0, which is,

unsurprisingly, e−r2/4t

(4πt)d/2
. As a recap, to produce this estimate, we used this as an

initial approximation to the heat kernel, and then perform some procedures to turn
this into an actual heat kernel. We then observe that all the correction terms we
add are of higher order, so we are happy.

Note that all we used about Kt was the properties stated in Lemma 2.1, and
the procedure is pretty general. One can interpret the success of this procedure as
testifying to the locality of the heat kernel. The properties of Kt we required were
always local conditions, namely that Kt looks locally like a heat kernel for small
t. We then get to produce an actual heat kernel Ht, whose difference from Kt is
something we can control very well, and in particular vanishes in the limit t→ 0.

In general, if our manifold is written as a union of two open submanifolds, and
we have produced heat kernels on each submanifold (suitably interpreted), then we
can attempt to glue them together using a partition of unity. This will not give us
an actual heat kernel, but the failure to be a heat kernel decreases exponentially
as t → 0 (since Ht(x, y) falls exponentially as t → 0 whenever x 6= y). The above
argument then lets us produce a heat kernel whose difference from the “fake” one
vanishes to all orders as t→ 0.
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3 Heat Kernel on an Unbounded Domain

This section is completely unrelated to the remainder of the article. Here we are
going to further specialize to the case of the Laplacian ∆ acting on functions. Our
goal is to extend our results to all open manifolds.

The strategy we shall adopt is to consider an exhaustion Ω1 ⊆ Ω2 ⊆ · · · ⊆M by
relatively compact open submanifolds‡. We take the heat kernels on Ω̄i and consider
the limit as i→∞. We will show that this gives us a fundamental solution to the
heat equation. Note that everything we have done in the previous sections apply
to manifolds with boundary as well, as long as we require the initial conditions and
solutions to vanish at the boundary.

We begin with a note on terminology. On an open manifold, the heat kernel
is not necessarily unique. To avoid confusion, we will say a function Kt(x, y) is a
fundamental solution if for any continuous bounded f0(x), the function

f(x, t) =

∫
M

Kt(x, y)f0(y) dy

is a solution to the heat equation, and f(x, t)→ f0(x) as t→ 0 for all x ∈M . The
label “heat kernel” will be reserved for the one we explicitly construct, which we will
show to be the smallest positive heat kernel.

The main property of the Laplacian that we will use is the maximum principle:

Theorem 3.1 (Maximum principle). Let M be a Riemannian manifold and U ⊆M
a precompact open subset. Let f be a continuous solution to the heat equation on UT =
Ū× [0, T ]. Let ∂∗UT be the subset of the boundary consisting of Ū×{0}∪(∂U)× [0, 1].
Then

sup
UT

f = sup
∂∗UT

f, inf
UT

f = inf
∂∗UT

f.

Proof. It suffices to show the statement for the supremum, as the infimum case
follows by considering −f .

The idea is that at a maximum, the first derivatives all vanish, and the operator
∆ + ∂

∂t picks out information about the second derivative. The second derivative
test then prevents the existence of maxima or minima.

After picking local coordinates, ellipticity means we can write

∆ +
∂

∂t
=
∑

aij(x)
∂2

∂xi∂xj
+ bi(x)

∂

∂xi
+
∂

∂t
,

where aij(x) is a negative definite matrix for all x (one convinces oneself that there
is no constant term since ∆ + ∂

∂t kills all constant functions).

‡ We will always assume our open submanifolds have smooth boundary

13



The second derivative test is not very useful if the second derivatives vanish.
Thus, we perform a small perturbation. For δ > 0, we set

gδ = f − tδ.

Then we instead have (
∆ +

∂

∂t

)
gδ = −δ.

It suffices to show that
sup
UT

gδ = sup
∂∗UT

gδ.

The result then follows from taking the limit δ → 0.
First suppose the supremum is achieved at some interior point (x, t) ∈ UT \ ∂UT .

Then we know ∑
aij(x)

∂2f

∂xi∂xj
= −δ.

But we know that aij(x) is negative definite, so by elementary linear algebra, there
must be some v such that vivj∂i∂jf > 0 (e.g. apply Sylvester’s law of inertia to aij).
So moving x in the direction v increases f , hence gδ. This contradicts the fact that
(x, t) is a maximum.

It remains to exclude the possibility that the supremum is attained when t = T .
But if it is attained at (x, T ), then ∂f

∂t (x, T ) ≥ 0, or else going back slightly in time
will increase f and hence gδ. So the same argument as above applies.

Note that here we only get a weak form of the maximum principle. We do not
preclude the possibility that the supremum is attained at both the boundary and
the interior. This is the price we have to pay for cheating by perturbing u a bit to
apply the second derivative test.

From this, we deduce the following bounds on the heat kernel:

Theorem 3.2. The heat kernel Ht for a compact Riemannian manifold M satisfies

(i) Ht(x, y) ≥ 0.

(ii) For every fixed x ∈M and t > 0, we have∫
M

Ht(x, y) dy ≤ 1.

Moreover, the integral → 1 as t→ 0.

(iii) If U ⊆M is open, and Ū has heat kernel Kt(x, y), then

Kt(x, y) ≤ Ht(x, y)

for all x, y ∈ U and t > 0. In particular, taking Ū = M , the heat kernel is
unique.

14



Proof.

(i) By the maximum principle, convolving any non-negative function with Ht gives
a non-negative function. So Ht must itself be non-negative. (We would like
to apply the maximum principle directly to Ht but unfortunately Ht is not
continuous at t = 0)

(ii) f(x, t) =
∫
M
Ht(x, y) dy is the solution to the heat equation with initial

condition 1 everywhere.

(iii) Extend Kt(x, y) by zero outside of U . For any non-negative function f0, the
convolution

f(x, t) =

∫
M

(Ht(x, y)−Kt(x, y))f0(y) dy

is a solution to the heat equation on U with initial conditions 0. Moreover,
when x is on ∂U , the function Kt(x, y) vanishes, so f(x, t) ≥ 0. So by the
maximum principle, f ≥ 0 everywhere. It follows that Ht(x, y) ≥ Kt(x, y)
everywhere.

These bounds allow us to carry out our initial strategy. Pick a sequence of
exhausting relatively compact open submanifolds Ω1 ⊆ Ω2 ⊆ · · · ⊆M . Let HΩi

t (x, y)
be the heat kernel of Ω̄i, extended to all of M ×M by zero. We then seek to define
a fundamental solution

Ht(x, y) = lim
i→∞

HΩi
t (x, y).

By (iii) above, we see that the limit exists pointwise, since it is an increasing sequence.
To say anything more substantial than that, we need a result that controls the limit
of solutions to the heat equation:

Lemma 3.3. Let M be any Riemannian manifold and a, b ∈ R. Suppose {fi} is a
non-decreasing non-negative sequence of solutions to the heat equation on M × (a, b)
such that ∫

M

fi(x, t) dx ≤ C

for some constant C independent of i and t. Then

f = lim
i→∞

fi

is a smooth solution to the heat equation and fi → f uniformly on compact subsets
together with all derivatives of all orders.

Proof sketch. We only prove the case where M is compact. Let Ht be the heat kernel.
Fix [t1, t2] ⊆ (a, b). Then for any x ∈M and t ∈ (t1, t2), we can write

fi(x, t) =

∫
M

Ht−t1(x, y)fi(y, t1) dy. (∗)
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By monotone convergence, we also have

f(x, t) =

∫
M

Ht−t1(x, y)f(y, t1) dy.

So f is a solution to the heat equation and is smooth. To show the convergence is
uniform, simply observe that

0 ≤ (f − fi)(x, t) ≤ D
∫
M

[f(y, t1)− fi(y, t1)] dy

for some constant D, and the right-hand side → 0 by dominated convergence.
In the non-compact case, we multiply fi by a compactly supported bump function

to reduce to the compact (with boundary) case, and replace (∗) by Duhamel’s
principle.

Theorem 3.4. If we define

Ht(x, y) = lim
i→∞

HΩi
t (x, y),

then Ht is a smooth fundamental solution to the heat equation. Moreover, Ht(x, y)
is independent of the choices of Ωi. In fact,

Ht(x, y) = sup
Ω⊆M

HΩ
t (x, y).

Moreover, Ht(x, y) is the smallest positive heat kernel, i.e. Ht(x, y) ≤ H ′t(x, y) for
any other positive heat kernel H ′t.

Proof. Since HΩi
t are increasing, we know the pointwise limit Ht(x, y) exists, but

can possibly be infinite.
To see that Ht(x, y) is in fact smooth, we apply Lemma 3.3. To do this, we

observe that on any open subset of Ωi, the function HΩi
t (x, y) is a solution to(

∆x + ∆y + 2
∂

∂t

)
HΩ
t (x, y) = 0,

which, after rescaling t, is the heat equation.
If we fix any relatively compact open U ⊆ M , then Theorem 3.2(ii) gives us a

uniform bound ∫
U×U

HΩi
t (x, y) dx dy ≤ volU.

So Lemma 3.3 tells us Ht(x, y) is smooth on U . Since U was arbitrary, Ht(x, y) is a
smooth function.
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To see this is a fundamental solution, we again apply Lemma 3.3. By adding a
constant, we may assume f0 is positive. So by monotone convergence,

f(x, t) = lim
i→∞

∫
HΩi
t (x, y)f0(y) dy, t > 0.

Moreover, we see that∫
HΩi
t (x, y)f0(y) dy ≤ (sup f0)

∫
HΩi
t (x, y) dy ≤ sup f0.

So f(x, t) is bounded in the supremum, hence locally bounded in L1. So f is a
solution to the heat equation.

The it remains to show that f is in fact continuous as t → 0. This will follow
if we can show that for any x ∈ M and any (relatively compact) open subset U
containing x, we have

lim
t→0

∫
U

Ht(x, y) dy = 1.

We know this limit is bounded above by 1 by monotone convergence, and that
it is equal to 1 if we replace Ht(x, y) by HU

t (x, y) by Theorem 3.2(ii). But this
replacement only makes the integral smaller by the maximum principle applied to
the difference. So we are done.

The rest is clear from the maximum principle.

4 The Hirzebruch Signature Theorem

We now apply our theory to the case of the Hirzebruch signature theorem. Fix a
Riemannian manifold M . Recall that the Hodge star operator acts on

⊕
p Ωp with

±1 eigenspaces Ω±. The operator

D = d + d∗ : Ω+ → Ω−

is an elliptic operator whose index is exactly the signature of M .
In Section 1, we have established that

indexD = tr e−tD
∗D − tr e−tDD

∗

for all t > 0. In Section 2, we constructed a heat kernel for d + d∗ : Ω∗ → Ω∗, and
we observe that this commutes with the Hodge star. So we get an asymptotic series

tr e−tD
∗D ∼

∞∑
k=0

tk−d/2
∫
M

1

(4π)d/2
tr(uk|Ω+

(x, x)) dx.
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Putting everything together, we can write

indexD ∼
∞∑
k=0

tk−d/2
∫
M

ak(x) dx.

However, we also know the left-hand side is a constant. So the non-constant terms
must in fact cancel out. So we know that

indexD =

∫
M

ad/2(x) dx.

At this point, you might think it is rather hopeless to trace through the con-
struction to obtain an explicit identification of ad/2, and you would be right. We
will cheat as Hirzebruch did. However, it turns out for purely formal reasons, there
aren’t too many possibilities for it.

Recall that truk is a rational function of the components of the metric and its
derivatives. The same is not true for trui|Ω± . However, the change of basis matrix
to an eigenbasis of ∗ can only be a function of g, as it is performed fiberwise. So we
can write

trui|Ω± =
∑

bi(g)mi,

where bi are arbitrary smooth functions of the component of the metric, and mi are
monomials in the derivatives of gij .

Theorem 4.1 (Gilkey). Suppose ω associates to each Riemannian manifold a
differential form that, in local coordinates, can be expressed in the form

∑
ai(g)mi

as above.
Moreover, suppose ω has weight w ≥ 0. That is, if we replace the metric g by λg,

then ω 7→ λwω. Then ω is a polynomial function of the Pontryagin forms, and in
fact has weight 0.

We need to calculate the weight of ak(x) dx. Remembering that dx also depends
on the metric, careful bookkeeping reveals that ak is of weight d− 2k. So we deduce
that indexD is the integral over M of a polynomial function of the Pontryagin forms!

Once we know that ak(x) dx is a polynomial function of the Pontryagin forms,
we just do as Hirzebruch did and evaluate both sides on enough spaces to show that
it must be the L-genus:

Theorem 4.2 (Hirzebruch signature formula). If M is a closed Riemannian manifold
of dimension d (with 4 | d), then

signM =

∫
M

L(p1, . . . , pd/4).
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5 Signature for Manifolds with Boundary

We will move on to discuss the case of a manifold with boundary. We start with
some generalities, and then move on to discuss the signature specifically. Here the
boundary conditions play a crucial role, and the best way to think about them is via
the theory of unbounded operators.

For simplicity, we will work with first-order differential operators only. Let D be
a first-order differential operator on a manifold M with boundary. To define it as an
unbounded operator, we need to specify its domain. If ∂M = ∅, then we can simply
take it to be H1(M). If not, we have to be a bit more careful. For example, if we
want to impose Dirichlet boundary conditions, then we can take the domain to be
H1

0 (M).
Once we have picked a domain for D, we can define D∗. As an operator, this will

still be given by the usual formulas coming from integration by parts. The domain
will again be a subspace of H1(M), and is determined by the requirement that∫

∂M

f(x)g(x) dx = 0 for all f ∈ dom(D), g ∈ dom(D∗).

This ensures we always have (Df, g) = (f,D∗g) with the boundary terms vanishing
when integrating by parts. For example, if dom(D) = H1

0 (M), then dom(D∗) =
H1(M), and vice versa.

Once we have done all these, we can define the index to be

indexD = dim kerD − dim kerD∗ = dim kerD∗D − dim kerDD∗.

A word has to be said about D∗D. Its domain consists of the functions f ∈ dom(D)
such that Df ∈ dom(D∗). Elements in the kernel of D definitely satisfy this boundary
condition, and so we have kerD = kerD∗D. This index depends on the choice of
domain of D, and for our purposes, the right choice is the one whose index relates
best to the signature of M .

The point of saying all this is that the boundary condition is pretty important.
To understand the signature, we can still compute the index of d + d∗ : Ω+ → Ω−,
as long as we pick the right boundary conditions.

To figure out the right boundary condition, we need to recall some facts about
the signature. Recall that Poincaré duality gives us an isomorphism

Hd−`(M,∂M) ∼= H`(M).

We then have a bilinear form

Hd/2(M,∂M)⊗Hd/2(M,∂M)→ Hd(M,∂M)→ H0(M) ∼= R

given by the cup product, and the signature is defined to be the difference between
the dimensions of the positive and negative eigenspaces. This is a degenerate bilinear

19



form. Since the map factors through Hd/2(M)⊗Hd/2(M,∂M), we know the kernel of
this pairing is contained in ker(Hd/2(M,∂M)→ Hd/2(M)), and in fact is equal to it.
Thus, to understand the signature, we have to understand the image of Hk(M,∂M)
in Hk(M).

Here we assume that there is a collar neighbourhood of the boundary that is
isometric to ∂M × [0, 1]. It is useful to consider the manifold

M̂ = M ∪∂M ∂M × R≤0,

which then has a natural Riemannian structure. Topologically, M̂ deformation
retracts to M , and we have a commutative diagram

H∗c (M̂) H∗(M̂)

H∗(M,∂M) H∗(M).

∼ ∼

So we equivalently want to understand the image of H∗c (M̂)→ H∗(M̂). What
we need is the following upgrade of the Hodge decomposition theorem (which we
shall not prove):

Lemma 5.1. The image of H∗c (M̂)→ H∗(M̂) is naturally isomorphic to the space
of L2 harmonic forms on M̂ .

Note that this is peculiar to manifolds of this type. It is not in general true for
all open manifolds.

Let us analyze what the L2 harmonic forms on M̂ look like. Consider the subset
∂M × (−∞, 1), writing u for the second coordinate. Then we can write the operator
D = d + d∗ as

D = σ

(
∂

∂u
+A

)
,

where σ = σD(du) is an isomorphism given by the symbol of D. Up to some signs,
it is given by σ = du ∧+ ι ∂

∂u
.

The operator A is some first-order self-adjoint elliptic operator on Ω+(M̂)|∂M ,
and in particular is independent of u. To understand it better, we observe that we
can identify Ω+(M̂)|∂M with Ω(∂M). Indeed, a general differential form on Ω+(M̂)
can be written as

α = α0 + α1 ∧ du,

and so we have
∗α = ±(∗α1)± (∗α0) ∧ du.

So the map Ω+(M̂)|∂M → Ω(∂M) that sends α to α0 is in fact an isomorphism.
Note that this map is simply the pullback of differential forms.
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Under this identification, it is not hard to see that, up to some signs, A is given
by

A = ± ∗ d± d ∗ .

We will work sufficiently formally that the only thing we need to know about A
is that its kernel consists of forms β with dβ = d∗β = 0, i.e. harmonic forms. The
bored reader can figure out the signs carefully themselves.

We now decompose Ω+|∂M into the A-eigenspaces with an eigenbasis {ψλ}, and
we can write an L2 harmonic form in Ω+ as

α =
∑
λ

fλ(u)ψλ(y).

We then see that a solution to Dα = 0 must be given by

α =
∑
λ

eλufλ(0)ψλ(y).

Since we allow λ ∈ (−∞, 1), this is in L2 if and only if fλ(0) = 0 for all λ ≥ 0. Thus,
we conclude that

Theorem 5.2. The L2 harmonic forms in Ω+(M̂) are in canonical bijection with
harmonic forms in Ω+(M) such that in the collar neighbourhood of the boundary, if
we decompose

α =
∑
λ

fλ(u)ψλ(y),

then fλ(0) = 0 for all λ ≥ 0.

This is the boundary condition we will be dealing with. To talk about the adjoint,
it is easier to identify Ω+ with Ω− via σ, and drop σ from the definition of D. Then
by the self-adjointness of A, we have

D∗ = − ∂

∂u
+A

The adjoint boundary condition then says fλ(0) = 0 for all λ < 0. Since we allow f0(0)
to be non-zero, the space of solutions has a slightly more complicated description.

Theorem 5.3. The harmonic forms in Ω−(M) satisfying fλ(0) = 0 for all λ < 0
are in canonical bijection with the harmonic forms in Ω−(M̂) that can be written as
a sum of an L2 harmonic form plus a form that is constant in u in the ∂M × (−∞, 1)
part.

Let H−∞ be the space of such harmonic forms constant in u, and set h−∞ = dimH−∞.
Then we have
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Theorem 5.4. Under the boundary conditions described, we have

index(D : Ω+(M)→ Ω−(M)) = signM − h−∞.

We will say one final thing about H−∞. As before, we can identify Ω−(M̂)|∂M
with Ω(∂M). This sends H−∞ injectively into H∗(∂M) via the composition

H−∞ → H∗(M)
j→ H∗(∂M).

An exercise in Poincaré duality gives dim im j = 1
2 dimH∗(∂M). This gives us a

bound

h−∞ ≤
1

2
dimH∗(∂M).

This does not seem very useful, but we will later bound h−∞ from below via other
means, and show that this is in fact an equality.

6 Heat Equation on the Boundary

In this section, we study the boundary condition we discovered previously in a bit
more detail. Our goal is to understand the regularity properties and obtain some
estimates of the kernel. In a sense, the work is not very complete, and the reader
might feel we stopped abruptly halfway. We just do the bare minimum required to
get through the computations needed in the next section when we glue these with
the corresponding results in the interior.

6.1 Regularity of Operator

We will fix a manifold N , which will be thought of as ∂M , and consider the manifold
N ×R≥0. We will write y ∈ N and u ∈ R≥0. We let E be a Hermitian vector bundle
on N .

Let A be a first-order self-adjoint elliptic operator on E, and consider the differ-
ential operator

D =
∂

∂u
+A.

This is the differential operator of interest on N×R≥0. While the definition resembles
that of a heat operator, it may not be the best idea to think of it as a heat operator.
We will later introduce a further time variable t and consider e−tD

∗D, and confusion
might arise.

The basic problem we want to solve is the equation

Df = g.

For now, we assume g ∈ Γc(E × R≥0), and later extend to more general functions
after we establish the right bounds.
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As before, since A is self-adjoint and elliptic, we can find an eigenbasis {ψλ} of
A. We write

f(y, u) =
∑
λ

fλ(u)ψλ(y), g(y, t) =
∑
λ

gλ(u)ψλ(y).

The we see that for the equation to hold, we must have(
d

du
+ λ

)
fλ(u) = gλ(u).

We have previously decided that the boundary condition we want is fλ(0) = 0 for
λ ≥ 0. There is another way we can think about this boundary condition. Observe
that the solution to this differential equation is well defined up to adding Ce−λu. If
λ < 0, then there is at most one solution with reasonable growth as u→∞. However,
if λ ≥ 0, then we can add any multiples of e−λu and have a sensible solution (λ = 0
is somewhat of an edge case). Thus, fixing fλ(0) = 0 gives us a unique “sensible”
solution.

For convenience, we write P for the composition

H1(E × R≥0)
r→ H0(E × {0})→ H0(E × {0}),

where r is restriction and the last map is the spectral projection onto the subspace
spanned by the eigenvectors with non-negative eigenvalues. Then our boundary
condition is Pf = 0. By an abuse of notation, we write 1 − P for r − P , and the
boundary condition for D∗ will then by (1− P )f = 0. We shall write Γ(E ×R≥0;P )
for the space of smooth sections f such that Pf = 0.

Imposing this boundary condition, we can write down explicit solutions for fλ:

fλ(u) =


∫ u

0

eλ(v−u)gλ(v) dv λ ≥ 0

−
∫ ∞
u

eλ(v−u)gλ(v) dv λ < 0

.

We check that for large u, the function fλ(u) is either exponentially decreasing (if
λ > 0), constant (if λ = 0) or identically zero (if λ < 0). The constant term wrecks
our hope that this takes values in Hs, but we can still hope it takes values in Hs

loc.
Note also that for λ < 0, the value of fλ(u) depends on the future values of gλ,

which ties in with our previous point — at large u, all future values of gλ are zero,
hence fλ(u) = 0.

We let Q : Γc(E × R≥0) → Γ(E × R≥0;P ) be the function that sends gλ to fλ
above, which is clearly linear. The next proposition will, in particular, show that
this map is well-defined, i.e. Qf is actually smooth:

Proposition 6.1. Q extends to a continuous map Hs → Hs+1
loc .
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Proof. Recall that since A is elliptic, we have

‖f‖Hs+1 ≤ C(‖f‖Hs + ‖Af‖Hs).

So we can equivalently define the H1 norm by

‖f‖2H1 = ‖f‖2L2 + ‖∂uf‖2L2 + ‖Af‖2L2 .

Using that the eigenspace decomposition is orthogonal in L2 and the defining
equations

Aψλ = λψλ,
∂fλ
∂u

= gλ − λfλ,

we get an inequality

‖f‖2H1 ≤ C ·
∑
λ

(1 + λ2)‖fλ‖2L2 + ‖gλ‖2L2 .

To bound ‖fλ‖L2 in terms of ‖gλ‖L2 , we use the (rotated) Laplace transform

f̂λ(ξ) =

∫ ∞
0

e−iuξgλ(u) du.

One checks easily that up to a constant which we omit, we have Parseval’s identity:

‖f̂λ‖L2 = ‖fλ‖L2 .

We can explicitly compute

f̂λ(ξ) =
ĝλ(ξ) + fλ(0)

λ+ iξ
.

Using Parseval’s identity, and the fact that

fλ(0) = −
∫ ∞

0

eλugλ(u) du if λ < 0,

we obtain bounds
|λ|‖fλ‖L2 ≤ 2‖gλ‖L2 .

So if we ignore the λ = 0 term, Q would send H0 into H1. The f0 term is
eventually constant, given by the integral of the compactly supported function∫∞

0
g0(v) dv. So Q maps H0 into H1

loc.
Using the equation

ds

dus

(
d

du
+ λ

)
fλ =

dsgλ
dus

and calculating as above, we see that Hs gets mapped into Hs+1
loc .
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The main takeaway from the section is then the following theorem:

Theorem 6.2. There is a linear operator

Q : Γc(E × R≥0)→ Γ(E × R≥0;P )

such that
DQg = g for all g ∈ Γc(E × R≥0),

QDf = f for all f ∈ Γc(E × R≥0;P ).

Moreover, Q extends to a continuous map Hs → Hs+1
loc for all integral s. It is given

by convolution with a kernel Qu(y, z), where u is now allowed to take negative values.
The kernel is smooth away from u = 0.

6.2 Kernel of Operator

We now turn to the heat equation. As usual, we define

∆1 = D∗D, ∆2 = DD∗,

and consider e−t∆i . Our objective is to understand

K(t) =

∫∫
K1,t(y, u; y, u)−K2,t(y, u; y, u) dy du,

where Ki,t(y, u; z, v) is the kernel of e−t∆i . We do not make any claims about how
this relates to an index (or not), since we are working on a non-compact manifold
and life is tough.

We first consider ∆1, which is explicitly

∆1 = − ∂2

∂u2
+A2.

We again perform separation of variables. We write our potential solution as∑
fλ(u, t)ψλ(x). Our boundary conditions are then

Pf = 0, (1− P )Df = 0.

Note that the first equation constrains fλ for λ ≥ 0, and the second constrains fλ
for λ < 0. So we have a single constraint for each fλ.

To find the fundamental solution for e−t∆1 , we have to find a fundamental solution
for the operator

∂

∂t
− ∂2

∂u2
+ λ2.

Up to the λ, this is just the classical heat equation.
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For the boundary condition when λ ≥ 0 we can simply write down the fundamental
solution to be

Kλ,t(u, v) =
e−λ

2t

√
4πt

(
exp

(
− (u− v)2

4t

)
− exp

(
− (u+ v)2

4t

))
.

This is easily seen to vanish when u = 0 or v = 0.
When λ < 0, we need to do something more complicated. People good at solving

differential equations will find the kernel to be

Kλ,t(u, v) =
e−λ

2t

√
4πt

(
exp

(
− (u− v)2

4t

)
+ exp

(
− (u+ v)2

4t

))
− |λ|e|λ|(u+v) erfc

(
u+ v

2
√
t

+ |λ|
√
t

)
,

where erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−ξ
2

dξ.

Equipped with these, we can then write the heat kernel of ∆1 as

K1,t(y, u; z, v) =
∑
λ

Kλ,t(u, v)ψ̄λ(y)ψλ(z).

The formula for K2,t is basically the same, except the boundary conditions are
swapped. So we find the difference to be

K1,t(y, u; y, u)−K2,t(y, u; y, u)

=
∑
λ

signλ

(
−e
−λ2t−u2/t

√
πt

+ |λ|e2|λ|u erfc

(
u√
t

+ |λ|
√
t

))
|ψλ(y)|2

=
∑
λ

signλ
∂

∂u

(
1

2
e2|λ|u erfc

(
u√
t

+ |λ|
√
t

))
|ψλ(y)|2,

where we set sign 0 = +1.
Integrating first over u then over y, we get

K(t) = −
∑
λ

signλ

2
erfc(|λ|

√
t).

Recall that in the compact case, this expression is identically equal to the index of
the operator D. In this case, we have

K(t)→ −1

2
dim kerA as t→∞.
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Writing h = dim kerA, we see that in fact K(t) + h
2 → 0 exponentially as t→∞.

To understand this better, we define the η function

η(s) =
∑
λ6=0

signλ |λ|s,

where of course we sum over eigenvalues of A with multiplicity. One should think of
this as some sort of Dirichlet L-function for the spectrum. To relate this to K(t), we
first observe that

K ′(t) =
1√
4πt

∑
λ

λe−λ
2t.

So after integration by parts once, we find that, at least formally,∫ ∞
0

(
K(t) +

1

2
h

)
ts−1 dt = −Γ(s+ 1/2)

2s
√
π

∑
λ6=0

signλ

|λ|2s
= −Γ(s+ 1/2)

2s
√
π

η(2s).

This is in fact literally true when Re(s) is big enough, since Lemma 1.1 tells us

how quickly the eigenvalues grow, and erfc(x) < e−x
2

for all x.
If we assume that K(t) has an asymptotic expansion

K(t) ∼
∞∑
k=0

akt
k−d/2,

which we will show in the next section by devious means, then we can explicitly do
the integral to get

η(2s) = − 2s
√
π

Γ(s+ 1/2)

(
h

2s
+

N∑
k=0

ak
k − d/2 + s

+ ΘN (s)

)
,

where ΘN is holomorphic for Re(s) > − 1
2 (N + 1 − d/2). Taking N to be large

enough, we know that η admits a meromorphic continuation to the whole plane, and
the value at 0 is

η(0) = −(2ad/2 + h).

This is the final result we seek.

7 Heat Equation on Manifold with Boundary

We now use the previous calculations to establish local formulas for the index of a
differential operator on a manifold with boundary.
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Let M be a Riemannian manifold with boundary ∂M , and D : Γ(E) → Γ(F )
be a first-order elliptic differential operator. We assume there is a choice of collar
neighbourhood of ∂M with a diffeomorphism to ∂M × [0, 1] such that

D = σ

(
∂

∂u
+A

)
,

where σ = σD(du) is the bundle isomorphism E → F given by the symbol of D, and
A : Γ(E)→ Γ(E) is a first-order self-adjoint elliptic operator, independent of u. This
is the scenario we had in Section 5.

There is no loss in generality if we assume E = F and σ = 1, and we will do so
to simplify notation.

Lemma 7.1. D : Γ(E;P ) → Γ(E) has a two-sided parametrix R which sends
Hs → Hs+1.

The lemma implies everything we did for manifolds without boundary go through
without modification, and the index of D : Γ(E;P ) → Γ(E) can be calculated by
tr e−tD

∗D − tr e−tDD
∗
, etc.

Proof. Let Q1 be the parametrix on ∂M×[0, 1] given by restricting that on ∂M×R≥0

we constructed previously. Let Q2 be a parametrix on the interior of M . To be
precise, we consider the double of M obtained by gluing M ∪∂M M . Everything such
as E and D extend to the double, since we assumed everything looked like a product
near the boundary. We then obtain a parametrix on the double using usual elliptic
regularity theory, and then restrict to the interior of M .

We pick bump functions φ1, φ2, ψ1, ψ2 as follows:

0 1

φ1

0 1

ψ1

0 1

φ2

0 1

ψ2

Importantly, here ψ1 + ψ2 = 1, and so is a partition of unity.
Thinking of these as multiplication operators, we set

R = φ1Q1ψ1 + φ2Q2ψ2,

and standard gluing techniques shows that this works.
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We now know that if we can find a fundamental solution H for e−tD
∗D − e−tDD∗ ,

then we can calculate

indexD =

∫
M

Ht(x, x) dx

for any t. So our job will be to construct H and understand its asymptotic behaviour
as t→ 0.

As in the previous lemma, we can construct (approximate) fundamental solutions
H1 and H2 near the boundary and in the interior respectively, and set

Kt(x, y) = H1,t(x, y)φ1(x)ψ1(y) +H2,tφ1(x)ψ2(y).

We see that this satisfies the properties required to run the proof of Theorem 2.3.
So we know there is a true heat kernel H such that Ht −Kt → 0 exponentially as
t→ 0. So we have

indexD ∼
∫
∂M×[0,1]

H1,t(x, x)ψ1(x) dx+

∫
M

H2,t(x, x)ψ2(x) dx.

In the first integral, as t → 0, the contributions of any positive u is exponentially
suppressed. So we can replace the integral with one over ∂M × R≥0 and get rid of
ψ1.

In the second integral, we know that

H2,t(x, x) ∼
∑
k≥0

tk−d/2ak(x),

where ak(x) are given by local formulas, which are the same as the ones in the
without boundary case. Moreover, on the collar neighbourhood, D∗D and DD∗

are literally equal, both being − ∂2

∂u2 + A2 (near the boundary, they are equal as
differential operators but have different domains. Here we do not have boundary
conditions). So the upshot is H2,t(x, x) ∼ 0 on the collar neighbourhood, and so we
can drop the ψ2(x) in the integral.

Rearranging these, we know that

K(t) ∼ indexD −
∑
k≥0

tk−d/2
∫
M

ak(x) dx.

We are now in the situation of the end of the previous section. After rearranging, we
are allowed to conclude

indexD =

∫
M

ad/2(x) dx− h+ η(0)

2
.

We now apply this to the case where D is the signature operator d+d∗ : Ω+ → Ω−.
We have already found that

ad/2(x) = L(p1, . . . , pd/4).
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Recall that kerA consists of harmonic forms, so

h = dimH∗(∂M),

Combining these with Theorem 5.4, we deduce that

signM =

∫
M

L(p)− h+ η(0)

2
+ h−∞.

What we have to do now is to do something slightly sneaky. The reason h−∞
shows up is that our boundary condition for D required fλ(0) = 0 for λ ≥ 0, while
the adjoint boundary condition requires it for λ < 0, and the λ = 0 case is not
treated “symmetrically”.

We can run the whole calculation all over again where the boundary condition
for D is now fλ(0) = 0 for λ > 0. The main difference is that in the formula for
K(t), we now declare sign 0 = −1 instead of +1. Then the result is that

signM =

∫
M

L(p)− −h+ η(0)

2
− h+
∞.

Subtracting these two equations give

h = h−∞ + h+
∞.

Knowing also that h±∞ ≤ h
2 , we know that they must in fact be equal. So we get

Theorem 7.2.

signM =

∫
M

L(p)− η(0)

2
.

A Index and Geometry

In this appendix, we briefly demonstrate how interesting topological invariants can
be expressed as the index of a differential operator.

We recall some basics. Fix a manifold M and bundles E,F → M , together
with an elliptic differential operator D : Γ(E)→ Γ(F ). Then kerD and cokerD are
finite-dimensional, and the index of D to be

indexD = dim kerD − dim cokerD.

D has a formal adjoint D∗, and cokerD ∼= kerD∗. So

indexD = dim kerD − dim kerD∗.

Usually, the operator D∗D is more recognizable. If ψ ∈ kerD∗D, then

0 = (ψ,D∗Dψ) = (Dψ,Dψ).
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So kerD = kerD∗D. Then we can write

indexD = dim kerD∗D − dim kerDD∗.

The Hodge decomposition theorem allows us to relate the kernel of differential
operators to something more topological.

Theorem A.1 (Hodge decomposition theorem). Let M be a Riemannian manifold.
Recall that the Laplacian on p-forms is defined by

∆ = dd∗ + d∗d = (d + d∗)2.

If ψ ∈ Ωp(M) is such that ∆ψ = 0, then, as above, dψ = d∗ψ = 0. So ψ is in
particular a closed form. This defines a map

ker ∆→ H∗(M).

The Hodge decomposition theorem states that this map is an isomorphism.

Note that d + d∗ : Ω→ Ω is self-adjoint, so its index is just zero. However, by
varying its domain and codomain, we can get interesting indices.

Example A.2. Write

Ωeven =
⊕

Ω2k, Ωodd =
⊕

Ω2k+1.

Then we have a map
d + d∗ : Ωeven → Ωodd.

The index is then

dim ker ∆|Ωeven − dim ker ∆|Ωodd
= χ(M),

the Euler characteristic.

Example A.3. We can play the same game with the signature. Suppose dimM = 4k.
Recall that the Hodge star operator is an endomorphism Ω∗ → Ω∗ that squares to 1.
Write Ω± for the ±1 eigenspaces. One can show that d + d∗ anti-commutes with the
Hodge star, so induces a map

d + d∗ : Ω+ → Ω−.

We claim the index of this is exactly the signature of M .
We focus on the kernel of this map; the cokernel is similar. The kernel is the

subspace of H∗(M) that is invariant under the Hodge star operator. This consists of
the +1 eigenspace in H2k(M) plus the subspace spanned by ψ+∗ψ for ψ ∈ H2k−ε(M)
with 0 ≤ ε < 2k.

Similarly, the kernel of d+d∗ : Ω− → Ω+ consists of the −1 eigenspace in H2k(M)
plus the subspace spanned by ψ − ∗ψ for ψ ∈ H2k−ε(M) with 0 ≤ ε < 2k.

When we subtract the two, we are left with the difference between the ±1
eigenspaces of H2k(M), i.e. the signature.
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