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The document is intended to lead to a proof of the Hodge decomposition theorem
and spectral theorem of elliptic operators. The reader is assumed to be familiar with
analysis and the arguments are not very detailed.

A lot of the material is based on lecture notes by Johannes Ebert, which can be
found at https://ivv5hpp.uni-muenster.de/u/jeber_02/skripten.html.

1 Differential Operators

Fix a manifold M , and Hermitian vector bundles E0, E1 →M with inner products.

Definition. A differential operator L : Γ(M,E0)→ Γ(M,E1) of order k is a C-linear
map that is local, i.e. the value of Lu near a point p ∈M depends only on the values
of u near p, and in a coordinate chart, it is of the form

Lf =
∑
|α|≤k

Aα(x)Dαf

for some Aα ∈ Γ(Hom(E0, E1)).

Note that under our definition, any differential operator of order k is also a
differential operator of order k + 1.

Just as we can define tangent vectors as derivations, we have the following
coordinate-free definition of differential operators (which we will not use), with a
similar proof:
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Fact. Let L : Γ(M,E0)→ Γ(M,E1) be linear. Then

1. L is a differential operator of order 0 iff [L, f ] = 0 for all f ∈ C∞(M).

2. L is a differential operator of order k iff [L, f ] is a differential operator of order
k − 1 for all f ∈ C∞(M).

Integration by parts implies that we have

Lemma. For any differential operator L : Γ(M,E0)→ Γ(M,E1), there is a formal
adjoint L∗ : Γ(M,E1)→ Γ(M,E0) such that for any fi ∈ Γ(M,Ei), we have

(Lf0, f1)L2 = (f0, L
∗f1)L2 .

Definition. Let L be a differential operator of order k. The (principal) symbol of
L is the family of operators symk(L)(x, ξ) ∈ Hom((E0)x, (E1)x) for (x, ξ) ∈ T ∗M
given locally by

symk(L)(x, ξ) =
∑
|α|=k

Aα(x)ξα.

Formally, if π : T ∗M →M is the projection, then symk(L) ∈ Γ(Hom(π∗E0, π∗E1)).
In a coordinate-free manner, if s ∈ Γ(M,E0) and f ∈ C∞(M) with f(x) = 0,

then

symk(L)(x, (df)x)(s(x)) =
1

k!
L(fks)(x).

We say L is elliptic at x ∈M if symk(x, ξ) is invertible for all ξ ∈ T ∗xM \ {0}, and L
is elliptic if it is elliptic everywhere.

While the coordinate-free definition seems rather artificial, it is actually useful
when we want to do computations later on.

It will be convenient to note that the adjoint of an elliptic operator is elliptic.
More generally,

Lemma. For any operators L,L′, we have

symk(L∗)(x, ξ) = ±(symk(L)(x, ξ))∗

symk(L ◦ L′)(x, ξ) = symk(L)(x, ξ) ◦ symk(L′)(x, ξ).

Hence the composition and adjoints of elliptic operators is elliptic.

Example. Consider the exterior derivative d : Ωp(M) → Ωp+1(M). Using the
coordinate-free definition, we compute the symbol as

sym1(d)(x, (df)x)(ωx) = (d(fω))x = (df ∧ ω)x

whenever f(x) = 0. So the symbol of d is

(ξ, ω) 7→ ξ ∧ ω.
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Note that for p > 0, this is not invertible. Instead, what we have is an elliptic
complex.

Definition. An elliptic complex is a sequence of vector bundles E0, . . . , Em with
first-order differential operators

Li : Γ(M,Ei−1)→ Γ(M,Ei)

such that Li+1 ◦ Li = 0 and for any non-zero ξ ∈ T ∗xM , the sequence

0 π∗E0 π∗E0 · · · π∗Em 0
sym1(L1) sym1(L2)

is exact outside of the zero section of T ∗M .

Exercise. The de Rham complex and Dolbeault complex are elliptic complexes.

Ultimately, we will prove Hodge decomposition for elliptic complexes, which
subsumes the Hodge decomposition of Riemannian and Kähler manifolds.

To get from an elliptic complex to an elliptic operator, we use the following linear
algebraic result:

Lemma. Let {Vi} be finite-dimensional vector spaces, and

0 V0 V1 · · · Vm → 0
f1 f2

be an exact sequence. Let V =
⊕
Vi. Then f + f∗ : V → V is an isomorphism.

Proof. It suffices to show f + f∗ is injective. Suppose (f + f∗)x = 0. Then

(f + f∗)2x = (ff∗ + f∗f)x = 0.

So we get
0 = 〈ff∗x, x〉+ 〈f∗fx〉 = 〈f∗x, f∗x〉+ 〈fx, fx〉.

So fx = f∗x = 0. By exactness, x = fy for some y, and then

0 = 〈f∗fy, y〉 = 〈fy, fy〉 = 〈x, x〉.

So x = 0.

Corollary. If (E∗, L∗) is an elliptic complex, define E =
⊕
Ei. Then

D = L+ L∗ : Γ(M,E)→ Γ(M,E)

is elliptic.
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2 Sobolev Spaces

2.1 Local Sobolev spaces

To apply functional analytic techniques to PDE problems, we need an appropriate
Hilbert space of functions. The right notion is that of a Sobolev space.

Definition. Let U ⊆ Rn be an open set, s ∈ R (possibly negative) and f, g ∈ C∞c (U).
We define

(f, g)s =

∫
Rn

(1 + |ξ|2)sf̂(ξ)ĝ(ξ) dξ

‖f‖s = (f, f)s

We define Hs(U) to be the Hilbert space completion of C∞c (U) under ‖ · ‖s.
If no confusion arises, we will omit the (U) in Hs(U).

This space is actually usually called Hs
0(U) instead, with Hs(U) reserved for the

same definition but without the compactly supported requirement. We will only
need the compactly supported version, and will not write the 0.

Basic properties of Fourier transforms imply that for s ∈ Z>0, we have the
following more intuitive definition:

Lemma. If s is a non-negative integer, and f ∈ C∞c (U), then ‖ · ‖s is equivalent to
the norm

‖f‖′s =
∑
|α|≤s

‖Dαf‖L2 .

Lemma. For any s, Dα extends to a continuous map Hs → Hs−|α|.

A priori, the above definition does not let us think of elements of Hs as genuine
functions. Thankfully, we have the following result:

Lemma.

1. The natural map C∞c (U) ↪→ L2 induces an isomorphism H0 ∼= L2.

2. If s ≥ t and f ∈ C∞c , then ‖f‖t ≤ ‖f‖s. Hence there is a continuous map
Hs → Ht.

3. The map is injective.

Proof. Only (3) requires proof. We have to show that if fn ∈ C∞c is ‖ · ‖s-Cauchy

and ‖fn‖t → 0, then ‖fn‖s → 0. By assumption, we know f̂2n(1 + |ξ|2)t → 0 in L1.

So it converges to 0 almost everywhere. So f̂2n(1 + |ξ|2)s → 0 almost everywhere.
But we know it is Cauchy in L1. So it converges to 0 in L1.
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This lets us view the Hs as nested subspaces of L2. In fact, we get something
better.

Theorem (Sobolev embedding theorem). Let k an integer such that s > k + n
2 .

Then there exists a constant A such that for any u ∈ C∞(U), we have

‖u‖Ck ≤ A‖u‖s.

Thus, there is a continuous inclusion Hs ↪→ Ck.

Proof. Let |α| = ` < k. For x ∈ U and u ∈ C∞c (U), we have

|Dαu(x)| ∝
∣∣∣∣∫ eixξξαû(ξ) dξ

∣∣∣∣ ≤ ∫ |ξα||û(ξ)| dξ ≤
∫
|ξ|`|û(ξ)| dξ

≤
(∫
|ξ|2(1 + |ξ|2)−s dξ

)1/2(∫
|û(ξ)|2(1 + |ξ|2)s dξ

)1/2

.

The second term is exactly ‖u‖s, and the first term is a constant, which by elementary
calculus, is finite iff s > `+ n

2 .

Admittedly, the proof above does not make much sense. The following more
direct proof of a special case shows why we should expect a result along these lines
to be true:

Proof of special case. We consider the case r = 1, U = (0, 1) and k = 0. Then we
want to show that

‖u‖C0 ≤ A‖u‖1
for some constant A. In other words, if u ∈ H1, we want to be able to make sense of
u as a continuous function. The trick is to notice we can make sense of du

dx as an L2

function, and hence we can write

u(t) =

∫ t

0

du

dx
dx+ C

for some integration constant C. This can be determined by

C =

∫ 1

0

u(x) dx−
∫ 1

0

∫ t

0

du

dx
dx dt.

This lets us control supu in terms of integrals of u and du
dx .

One can in fact come up with a similar proof as long as s is an integer.
Another crucial theorem is the following:
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Theorem (Rellich compactness theorem). If U ⊆ Rn is precompact and s > t, then
the natural map Hs → Ht is compact.

Proof. Let uk ∈ C∞c (U) be such that ‖uk‖s ≤ 1. We have to produce a subsequence
that converges in Ht. The key claim is

Claim. ûk that equicontinuous and uniformly bounded on compact sets.

Assuming this claim, Arzelá–Ascoli implies there is a subsequence of ûk that is
uniformly convergent on compact subsets. Thus, we write

‖uk − u`‖2t =

(∫
|ξ|≤R

+

∫
|ξ|>R

)
|ûk − û`|2(1 + |ξ|2)t dξ.

For any fixed R, the first term vanishes in the limit k, `→∞ by uniform convergence.
For the second term, we bound

(1 + |ξ|2)t ≤ (1 + |ξ|2)s(1 +R2)t−s.

So we know that∫
|ξ|>R

|ûk − û`|2(1 + |ξ|2)t dξ ≤ (1 +R2)t−s(‖uk‖2s + ‖u`‖2s) ≤ 2(1 +R2)t−s.

This can be made small with large R, and we are done.
To prove the claim, we use the following trick — pick a bump function a ∈ C∞c (Rn)

such that a|U ≡ 1. Then trivially, uk = auk, and thus we have

ûk = â ∗ ûk.

Then controlling ûk would be the same as controlling â, which is fixed. For example,
to show that ûk is bounded, we write

|ûk| = |â ∗ ûk| ≤
∫
|â(ξ − η)ûk(η)| dη ≤

(∫
|â(ξ − η)|2(1 + |η|2)−s dη

)1/2

‖uk‖s

by Cauchy–Schwarz. Since â is a Schwarz function, the first factor is finite and
depends continuously on ξ. So ûk is uniformly bounded on compact subsets. Equicon-
tinuity follows from similar bounds on Dj ûk = (Dj â) ∗ ûk.

If we are lazy, we will often restrict to the case where s ∈ Z. If further s ≥ 0,
then the definition of the Sobolev norm in terms of derivatives can be very useful.
For s < 0, we will exploit the following duality:
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Lemma. The pairing

C∞c × C∞c → C

(f, g) 7→
∫
f(x)g(x) dx.

satisfies
|(f, g)| ≤ ‖f‖s‖g‖−s.

Thus, it extends to a map Hs ×H−s → C. Moreover,

‖f‖s = sup
g 6=0

|(f, g)|
‖g‖−s

. (†)

Thus, this pairing exhibits Hs and H−s as duals of each other.

Note that this duality pairing is “canonical”, and doesn’t really depend on the
Hilbert space structure on Hs (while the canonical isomorphism between Hs and
(Hs)∗ does). Later, we will see that in the global case, the Hilbert space structure is
not quite canonical, but the duality pairing here will still be canonical.

Proof. The first inequality follows from Plancherel and Cauchy–Schwarz

(f, g) = (f̂ , ĝ) =

∫
f̂(ξ)(1 + |ξ|2)s/2ĝ(ξ)(1 + |ξ|2)−s/2 dξ.

To show (†), one direction of the inequality is clear. For the other, if f ∈ C∞, take

ĝ = f̂(1 + |ξ|2)s. For general f , approximate.

A sample application of this is to show that differential operators induce maps
between Sobolev spaces. We already said that Dα tautologically induces a map
Hs → Hs−|α|. In a general differential operator, we differentiate, then multiply by a
smooth function. Thus, we want to show that multiplication by a smooth function is
a bounded linear operator. This is easy to show for s ∈ Z≥0, and duality implies the
result for negative s ∈ Z.

Lemma. Let s ∈ Z, a ∈ C∞c (R) and u ∈ Hs(U). Then

‖au‖s ≤ C‖a‖C|s|‖u‖s.

for some constant C independent of a. Thus, if L is a differential operator of compact
support of order k, then it extends to a map L : Hs+k → Hs.

Proof. We only have to check this for u ∈ C∞c (U). For s ≥ 0, this is straightforward,
since ‖au‖2s is a sum of terms of the form ‖Dα(au)‖20 for |α| ≤ k, and the product
rule together with the bound ‖au‖0 ≤ ‖a‖C0‖u‖0 implies the result.

For negative s, if s > 0, then

‖au‖−s = sup
v 6=0

|(au, v)|
‖v‖s

= sup
|(u, āv)|
‖v‖s

≤ sup
‖u‖−s‖āv‖s
‖v‖s

≤ ‖u‖−s‖a‖Cs .
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When proving elliptic regularity, we will need a slight refinement of the above
result.

Lemma. Let s ∈ Z, a ∈ C∞c (R) and u ∈ Hs(U). Then

‖au‖s ≤ ‖a‖C0‖u‖s + C‖a‖C|s|+1‖u‖s−1

for some constant C independent of a.

Proof. Again the case s > 0 is straightforward. If we look at a term ‖Dα(au)‖0, the
terms in the product rule where |α| = k and the derivatives all hit u contribute to
the firs term, and the remainder go into the second.

For s < 0, we proceed by downward induction on s, using the isometryHs+2 → Hs

given by extending 1 + ∆. This is an isomorphism, because in the Fourier world,
this is just multiplication by (1 + |ξ|2). Thus, we check the claim for u of the form
Lv. We have

‖aLv‖s ≤ ‖[a, L]v‖s + ‖L(av)‖s ≤ ‖[a, L]v‖s + ‖av‖s+2.

The second term is bounded, by induction, by

‖a‖C0‖v‖s+2 + C‖a‖C|s+2|+1‖v‖s+1 = ‖a‖C0‖Lv‖s + C‖a‖C|s+2|+1‖Lv‖s−1

Observing that |s+ 2| ≤ |s| since s < 0, we are happy with this term. To bound the
first term, we have

[a, L]v = [a,∆]v = −∇a · ∇v.

So we get a bound (omitting constant multiples)

‖[a, L]v‖s = ‖∇a · ∇v‖s ≤ ‖∇a‖C|s|‖∇v‖s ≤ ‖a‖C|s|+1‖v‖s+1 = ‖a‖C|s|+1‖Lv‖s−1.

2.2 Global Sobolev spaces

To define Sobolev spaces on manifolds, first observe the following lemma:

Lemma. Let U ′, V ′ ⊆ Rn be open and φ : U ′ → V ′ a diffeomorphism. If U ⊆ U ′

is precompact and V = φ(U) ⊆ V ′, then the induced map Hs(V ) → Hs(U) is a
bounded isomorphism for all s ∈ Z.

The proof is an exercise in the chain rule (for s ≥ 0) and duality (for s < 0).
From now on, we always assume s is an integer.

This means it makes sense to define
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Definition. Let M be a compact manifold and E →M a Hermitian vector bundle.
Fix an open cover {ϕi : Rn ∼→ Ui ⊆M} and a partition of unity {ρi} subordinate to
ϕi. For any u ∈ Γ(M,E), we define the Sobolev norm by

‖u‖2s =
∑
i

‖ρiu ◦ ϕ−1i ‖
2
s,

and define Hs(M ;E) to be the completion of Γ(M,E) with respect to ‖ · ‖sk.

There is an obvious inner product that gives rise to the Sobolev norm.
One should check for themselves that

Lemma. The norm ‖ · ‖s is well-defined up to equivalence, i.e. does not depend on
the choice of the Ui, φi, ρi.

One sees that our local theorems generalize easily to

Lemma.

1. There are bounded inclusions Hs → Ht for s > t which are compact.

2. There are bounded inclusions Hs → Ck for s > n
2 + k.

3. There is a natural duality pairing Hs(M ;E)×H−s(M ;E)→ C.

4. Any differential operator L : Γ(M,E0) → Γ(M,E1) of order k induces a
continuous map Hs+k(E0)→ Hs(M ;E1).

3 Elliptic Regularity

3.1 Local elliptic regularity

The main theorem of elliptic regularity is the following:

Theorem (Local elliptic regularity). Let L be a differential operator of order k ≥ 1
on Rn, U ⊆ Rn precompact and L elliptic over Ū . Then

1. There is a constant A such that for all u ∈ Hs+k(U), we have

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s).

2. If u ∈ Hr for some r is such that Lu ∈ Hs for some s, then µu ∈ Hs+k(U)
for every µ ∈ C∞c (U).

The first part requires getting our hands dirty and proving explicit estimates. A
proof sketch will be given here, with the details carried out in the Appendix.
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Proof sketch of (1). First prove it if L has constant coefficients, which is easy since

L̂u(ξ) = p(ξ)û(ξ)

for some polynomial p.
Next, for arbitrary L, we show that for any x ∈ x0, there is a neighbourhood

V ⊆ U such that the estimate holds for all u supported in V . To do so, let L0 be
the differential operator with constant coefficients that agree with L at x0. We then
have to bound ‖(L− L0)u‖s on the assumption that the coefficients of L− L0 can
be made arbitrarily small near the support of u.

Finally, use compactness and partitions of unity to glue these results together.

The second part follows from the first formally.
Observe the first part tells us if we already knew that u were in Hs+k, then

‖u‖s+k would be very well-behaved. This is an a priori estimate. To show that u is
actually in Hs+k, we apply appropriate smooth approximations.

Fix a φ ∈ C∞c (Rn) such that

φ ≥ 0,

∫
φ dx = 1, φ(−x) = φ(x).

For ε > 0, we define

φε(x) =
1

εn
φ
(x
ε

)
.

We then define the mollifier

Fε : C∞(Rn)→ C∞(Rn)

u 7→ φε ∗ u.

The main theorem about mollifiers, which I will not prove, is that

Theorem. Fε extends to a bounded operator Hs → Hs with norm ≤ 1. Moreover

• Fε commutes with all differential operators with constant coefficients.

• If L is a differential operator with compact support, then [Fε, L] extends to a
map Hs → Hs−k+1 for all s ∈ R, and has uniformly bounded operator norm.

• For any u ∈ Hs, we have Fεu ∈ C∞ ∩Hs.

• For any u ∈ Hs, we have Fεu→ u in Hs.

• If U ⊆ Rn is precompact and u ∈ Hr(U) for some r < s, and ‖Ftu‖s is
uniformly bounded in t, then u ∈ Hs(U).

The last point is how we are going to show that u ∈ Hs+k(U), while the others
are needed to establish the required bounds.
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Proof of (2) from (1). Inductively, we may assume µu ∈ Hs+k−1. We then bound

‖Fεµu‖s+k ≤ A(‖Fεµu‖s + ‖LFεµu‖s)
≤ A(‖Fεµu‖s + ‖[L,Fε]µu‖s + ‖Fε[L, µ]u‖s + ‖FεµLu‖s)
≤ A‖µu‖s +A1‖µu‖s+k−1 +A2‖u‖s+k−1 +A3‖Lu‖s,

where for the third term, we used that [L, µ] is a differential operator of degree
k − 1.

3.2 Global elliptic regularity

Let M be a compact manifold, E0, E1 complex vector bundles, and L an elliptic
differential operator from E0 to E1 of order k. By patching local results together,
we conclude that

Theorem (Global elliptic regularity).

1. There is a constant A such that for all s ≥ 0 and u ∈ Hs+k(M ;E0), we have

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s).

2. If Lu ∈ Hs, then u ∈ Hs+k. In particular, if Lu = 0, then u ∈ C∞(M).

This implies a lot of very nice properties about elliptic operators. First observe
the following result:

Proposition. Let U, V,W be Hilbert spaces and L : U → V bounded, K : U → W
compact. If there is an A such that

‖u‖U ≤ C(‖Lu‖V + ‖Ku‖W ),

then kerL is finite-dimensional and imL is closed.

Proof. We show that the unit ball of kerL is compact. If (un) is a sequence in the
unit ball of kerL, then

‖un − um‖U ≤ A‖Kun −Kum‖.

Since K is compact, there is a subsequence uni such that Kuni is Cauchy. So uni is
Cauchy. So we are done.

To show imL is closed, by restricting to the complement of the kernel, we may
assume L is injective. We will show that there is a c such that

‖u‖U ≤ c‖Lu‖V .

If not, pick a sequence un with ‖un‖U = 1 but ‖Lu‖V → 0. By compactness, we
may assume that Kun is Cauchy. Then we see that un must also be Cauchy, and
the limit u must satisfy ‖u‖U = 1 and Lu = 0, a contradiction.
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Corollary. L : Hs+k → Hs has finite-dimensional kernel and closed image.

The compactness of the manifold M is crucial for the inclusion Hs+k → Hs to
be compact.

We want to show that in fact L is Fredholm, i.e. both the kernel and the cokernel
are compact. Here we simply use duality. We need to show that

K = {v ∈ H−s : 〈Lu, v〉 = 0 for all u ∈ Hs+k}

is finite-dimensional. But this is exactly the kernel of L∗. So we deduce

Corollary. L is Fredholm, and in fact

Hs = kerL∗ + im(L : Hs+k → Hs).

The first factor is independent of s (since all elements are C∞), and taking the limit
s→∞, we get

Γ(M,E1) = kerL∗ ⊕ imL.

A bit of care is actually needed to take the limit s→∞, but we leave that for
the reader.

4 Hodge Theory

We now arrive at the main theorem we were working towards.

Theorem (Hodge Decomposition Theorem). Let (E∗, L) be an elliptic complex with
D = L+ L∗ and ∆ = D2 as before. Then

Γ(M,E) = kerD ⊕ imD.

Moreover,

1. kerD is finite-dimensional.

2. kerD = ker ∆ = kerL ∩ kerL∗

3. im ∆ = imD = imLL∗ ⊕ imL∗L = imL⊕ imL∗

4. kerL = imL⊕ ker ∆, and ker ∆→ H(E∗) is an isomorphism.

Proof. (1) follows from regularity. (2) follows from the identities

〈u,∆u〉 = 〈Du,Du〉 = 〈Lu,Lu〉+ 〈L∗u+ L∗u〉, u ∈ Γ(M,Ei).

For (3), we can also decompose Γ(M,E) = ker ∆⊕ im ∆. Since im ∆ ⊆ imD, they
must be equal. Moreover,

imD ⊆ im(LL∗)⊕ im(L∗L) ⊆ imL⊕ imL∗,
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but clearly imL⊕ imL∗ ⊥ ker ∆ since

〈Lu+ L∗v, w〉 = 〈u+ v,Dw〉.

So we must have equality throughout, and imL is clearly orthogonal to imL∗. For
(4), it is clear that kerL ⊇ imL⊕ ker ∆, and since kerL ⊥ imL∗, that must be an
equality.

Theorem (Spectral theorem). Let M be a closed Riemannian manifold and E →M
a Hermitian vector bundle. Let D : Γ(M,E)→ Γ(M,E) be formally self-adjoint of
order k ≥ 1. Then we have an orthogonal decomposition

L2(M,E) =
⊕
λ∈R

ker(D − λ).

Moreover, each ker(D−λ) is finite-dimensional, and for any Λ, there are only finitely
many eigenvalues of magnitude < Λ.

The idea is to apply the spectral theorem for compact self-adjoint operators to
the inverse of D. Of course, D need not be invertible. So we do the following:

Proof. Consider the operator L = 1 +D2 : Γ(M,E)→ Γ(M,E). It is then clear that
L = L∗ is elliptic and injective. So L : H2k → L2 is invertible (since the complement
of the image is kerL∗), with inverse S : L2 → H2k. Since L induces a bijection

between the smooth sections, so does S. Let T be the composition L2 S→ H2k ↪→ L2.
Then this is compact and self-adjoint (can check this for smooth sections, and use
that its “inverse” L is formally self adjoint).

By the spectral theorem of compact self–adjoint operators (and positivity of T ),

L2(M ;E) =
⊕
µ>0

ker(T − µ).

Moreover, each factor is finite-dimensional, and 0 is the only accumulation point of
the spectrum.

We will show that ker(T −µ) decomposes as a sum of eigenspaces for D. We first
establish that

ker(T − µ) = im(1− µL)⊥ = ker(1− µL).

Since L is self-adjoint, the second equality follows by elliptic regularity. The first
equality follows from the computation

〈x, (1− µL)u〉 = 〈x, u〉 − µ〈x, Lu〉 = 〈Tx, Lu〉 − µ〈x, Lu〉 = 〈(T − µ)x, Lu〉,

plus the density of Γ(M,E) and surjectivity of L : Γ(M,E)→ Γ(M,E).
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Now since D commutes with L, we know D acts as a self-adjoint operator on the
finite-dimensional vector space ker(T − µ) = ker(1− µL). Moreover, restricted to
this subspace, we have

D2 =
1

µ
− 1.

So by linear algebra, ker(T − µ) decomposes into eigenspaces of D of eigenvalues

±
√

1
µ − 1, and the theorem follows.

A Proof of local elliptic regularity

We fill in the details of the proof of local elliptic regularity. We fix L a differential
operator of order k ≥ 1 on Rn, U ⊆ Rn precompact and L elliptic over Ū .

Lemma. If L has constant coefficients, i.e.

L =
∑
|α|≤k

aαDα,

then there is an A such that for all u ∈ C∞c (U),

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s).

Proof. Observe that we have

L̂u(ξ) = p(ξ)û(ξ).

for some polynomial p of degree at most k. By ellipticity, for some R � 0 and
constant A > 0, we have

A|p(ξ)| ≥ (1 + |ξ|2)k/2.

So in the decomposition∫
|û(ξ)|2(1 + |ξ|)s+k dξ =

(∫
|ξ|≤R

+

∫
|ξ|≥R

)
|û(ξ)|2(1 + |ξ|)s+k dξ,

we can bound the first term by (1 +R2)k‖u‖s, and we can bound the second term by∫
|ξ|≥R

|L̂u(ξ)|2(1 + |ξ|2)s dξ ≤ ‖Lu‖s.

Lemma. For any fixed L and x0 ∈ U , there is some neighbourhood V ⊆ U of x and
A > 0 such that for all u ∈ C∞c (V ), we have

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s).
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Proof. Let L0 be the differential operator with constant coefficients that agree with
L at x0. Then L0 is also an elliptic operator, and the above applies. So for any u,
we have

‖u‖s+k ≤ A1(‖u‖s + ‖L0u‖s) ≤ A′(‖u‖s + ‖(L− L0)u‖s + ‖Lu‖s).

So we have to control the term ‖(L−L0)u‖s. For a tiny δ � 1, pick a neighbourhood
V of x0 such that the coefficients of L− L0 are bounded by δ. Then

‖(L− L0)u‖s ≤ δA2‖u‖s+k +A3‖u‖s+k−1,

where A2, A3 are fixed, independent of u and V . By the next lemma, for any ε > 0,
we can bound

A1A3‖u‖s+k−1 ≤ ε‖u‖s+k +A4(ε)‖u‖s.

We then deduce that

‖u‖s+k ≤ A1‖Lu‖s + (δA1A2 + ε)‖u‖s+k + (A1 +A4(ε))‖u‖s.

Picking δ and ε to be small enough, we are done.

Lemma. For any r < s < t and ε > 0, there exists C(ε) such that

(1 + |ξ|2)s ≤ (1 + |ξ|2)tε+ (1 + |ξ|2)rC(ε)

for all ξ. Hence
‖u‖s ≤ ε‖u‖t + C(ε)‖u‖r.

Proof. The claim is the same as

1 ≤ (1 + |ξ|2)t−sε+ (1 + |ξ|2)r−sC(ε).

Observe that for any y, we always have

1 ≤ yt−s + (1/y)s−r.

Then take y = (1 + |ξ|2)ε1/(t−s).

Theorem. For any L, there exists A such that

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s).

Proof. Pick W ⊇ Ū such that L is elliptic on W , and cover W (and hence Ū) with
finitely Vi where we have a bound as above, say

‖u‖s+k ≤ A(‖u‖s + ‖Lu‖s−k)
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for any u supported in the Vi’s. Now pick a partition of unity {µi} subordinate to
{Vi}. Then

‖u‖s+k ≤
∑
‖µiu‖s+k ≤

∑
C(‖µiu‖s + ‖Lµiu‖s)

≤
∑

C(‖µiu‖s + ‖µiLu‖s + ‖[L, µi]u‖s).

We can bound the first two by a constant multiple of ‖u‖s and ‖Lu‖s. To bound
the last term, we use that [L, µi] is a differential operator of order k − 1, and hence

‖[L, µi]u‖s ≤ C‖u‖s+k−1 ≤ ε‖u‖s+k + C(ε)‖u‖s.
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