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1 INTRODUCTION

The basic idea is that we have some sort of object, and we want to know when it is
“simple”. More precisely, we will try to understand the following problems:

1. We have a space and we want it to be a finite CW complex.
2. We have a cobordism and we want it to be trivial, i.e. a product M x [0, 1].

3. We have an open manifold and we want it to be the interior of a manifold
with boundary.

4. We have a map f : M — S*, and we want this to be homotopic to a fiber
bundle projection.

Of course, not all objects are “simple”. What we usually do is to impose some
conditions that make the conclusion even plausible. We then see if they are enough.
For example, for (1), a possible condition is that the homology groups are finitely
generated.

It is often the case that our assumptions are not strong enough, but in subtle
ways. When we try to geometrically simplify our object, we will encounter some
obstructions. These are usually elements in an abelian group that depends on the
fundamental group of our space. We then find that we can solve the problem if
and only if the obstruction vanishes. A particularly useful case is when the group
the obstruction lies in vanishes. In this case, there is always no obstruction, and
we win. In the cases we care about, this will be the case if the space is simply
connected.

Of course, what obstruction comes up is a function of what assumptions we
initially impose on our space. In fact, for the sake of exposition, in (3) and (4),
we will impose conditions so strong that no obstruction occurs. Elsewhere in the
literature, it is often the case that weaker conditions are imposed, and then there
will be interesting obstructions.

2  WALL’S FINITENESS OBSTRUCTION

One of the best kinds of spaces to work with is finite CW complexes. Thus, it is
natural to ask the question

Problem 2.1. When is a topological space weak homotopy equivalent to a finite
CW complex?

Applying a CW approximation and Whitehead’s theorem, we can equivalently
ask



Problem 2.2. When is a CW complex homotopy equivalent to a finite CW complex?

We might try to answer this question using familiar tools from algebraic topology
— necessary conditions include having finitely presented fundamental group and
finitely generated homology groups with bounded dimension. But this is not quite
enough, since upon a moment of thought, all these conditions are also satisfied by
spaces that are retracts of finite CW complexes.

Definition 2.3. A CW complex is finitely dominated if it is a retract of a finite
CW complex (in the homotopy category).

It turns out we can indeed characterize finitely dominated spaces by imposing
finiteness conditions on the fundamental group and (co)homology groups [8, Lecture
1, Proposition 22]. We are thus led to consider the following problem:

Problem 2.4. When s a finitely dominated CW complex in fact homotopy equiv-
alent to a finite CW complex?

In general, this is not always true. By the end of the section, we shall see that
the obstruction to this problem lies in a group called the zeroth Whitehead group
Whg (7 X), which in particular vanishes when m X is trivial. So if we restrict to
simply connected spaces, the answer is “always”.

It is possible to approach this problem from a rather geometric point of view,
by attempting to exhibit our space X as a finite CW complex, and see what
obstructions we encounter. However, the true nature of the obstruction is more
easily appreciated if we take an algebraic approach.

The idea is that instead of taking the homology of the singular chain complex
C,.(X), which is a rather crude invariant, we consider it as an object of the derived
category and try to obtain more nuanced invariants from it.

However, naively, this only retains H; information, not 7y, and we just said this is
important. The standard way to take m; into account while doing homology is to use
homology with local coefficients. This amounts to viewing X as the quotient of its
universal cover X by the natural 7 X-action, and hence consider C,(X) as a chain
complex of Z[m X]-modules. We can recover C,(X) by C.(X) = C.(X) @zjr, x) Z-

The fundamental observation is that if X is a finite CW complex, then we
have a quasi-isomorphism C(X) — C,(X), and the source is a finitely generated
free abelian group. More generally, the cell structure of X lifts to one of X, and
then C'(X) of X is a finitely generated free Z[r; X]-module, quasi-isomorphic to
C.(X). Conversely, we will show that if C,(X) is quasi-isomorphic to a complex of
finite free Z[m X]-modules, then this gives a prescription of how we can build X as
a finite CW complex.

How does the finite domination come in? Suppose X is only finitely dominated.
By adding finitely many cells to the dominating complex, we may assume the



retraction maps induce isomorphisms on 7, which allows us to compare their
singular chain complexes (or rather, the singular chain complexes of their lifts
as Z[m X]-modules). We then know that C,(X) is a retract of a finite free chain
complex. It is not necessarily the case that C.,(X) is quasi-isomorphic a finite free
chain complex. Indeed, a retract of a free module is only a projective module. So
it might be more reasonable to expect C’*(X ) to be quasi-isomorphic a finitely
generated projective chain complex, and this is indeed true.

Theorem 2.5 ([I2, Proposition 3.2]). Let R be a ring, and let C, be an R-
chain complex that is a retract of a finite free chain complex F, in the derived
category. Then C, is quasi-isomorphic to a finitely generated projective chain
complex P,. Moreover, if F, is concentrated in degrees [a,b], then we can pick P,
to be concentrated in [a,b] as well. O

The proof is a (slightly) clever trick that turns the homotopy retraction into a
genuine retraction ]

We will see that the failure of a finitely dominated space to be finite is the same
as the failure of a projective module to be free. The latter is measured by the K

group.

Definition 2.6. Let R be a ring. We define Ky(R) to be the Grothendieck group
of finitely generated projective R-modules (up to isomorphism), where we impose

[M] @[N] = [M & N].

We write Ky(R) for the quotient of Ko(R) by the free modules.
If R = Z|G] for a group G, then we write Why(G) = Ko(Z[G)).

Example 2.7. By the classification theorem of finitely generated abelian groups,
Why({e}) =0.

We can generalize this to chain complexes easily:

Notation 2.8. If P, is a bounded chain complex of finitely generated projective
R-modules, we write

1=—00

It is an easy exercise in homological algebra to check that

L As a rule of thumb, proofs of purely algebraic results will often be omitted. I am, however,
ambivalent about the inclusion of this proof. On the one hand, this result is the crux of the whole
argument. On the other hand, the proof does not provide any enlightenment. I have settled for
exclusion, for the techniques in the proof are orthogonal to the rest of the essay.
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Proposition 2.9. If P, is acyclic, then x(P.) = 0. Hence, by considering mapping
cones, X(Py) depends only on the quasi-isomorphism class of Pi. O

This allows us to extend the notation x(FPi) to any chain complex that is
quasi-isomorphic to a finitely generated projective chain complex. We thus define

Definition 2.10. Let X be a finitely dominated space. Then Wall’s finiteness
obstruction of X is

w(X) = x(C.(X)) € Ko(Z[m X)).

If X is in fact a finite CW complex, then the finiteness obstruction certainly
vanishes. The converse is true, and the proof is largely bookkeeping.

To do this, we build a finite CW complex Z dimension by dimension. Since
retracts of finitely presented groups are finitely presented, we know ;X is finitely
presented. So we can create a finite CW complex Z and a map f : 2 — X
that induces an isomorphism on 7. Since m3(X) is finitely generated, by adding
sufficiently many 2-cells to Z, we may further assume f is surjective on my. In
other words, f is a 2-equivalence.

To extend f to a k-equivalence inductively, suppose f : Z — X is a (k — 1)-
equivalence. Then the obstruction to it being a k-equivalence is

Wk(XJZ) g71—]6()2—72) = Hk(X7Z)7

which is finitely generated Z[m X]-modules since both C,(X) and C,(Z) are iso-
morphic to finitely generated chain complexes. Thus, we can add finitely many
k-cells to kill off (X, Z).

Suppose C,(X) is equivalent to an n-dimensional finitely generated projective
chain complex P,. We can carry the above procedure up to dimension n — 1 without
worrying much. When we want to finally reach dimension n, we have to add cells
carefully so as to not introduce a non-zero m,41(X, Z). This works if and only if
(X, Z) & H,(X,Z) is a free m X-module, in which case will simply add cells
corresponding to a basis.

But this is necessarily (almost) the case. Indeed, if @, is a finitely projected
projective chain complex whose homology is concentrated in the top degree, then
by picking a splitting, it is easy to see that

x(Qx) = x(H.(Q)).
Since the Euler characteristic is additive on short exact sequences, it follows that
(=1)"[Ha(X, Z)] = x(P.) = x(C£M(2)) = 0.

So H,(X,Z) is stably free, i.e. H,(X,Z) ® Z|m X]" is free for some r. We can
then wedge r many (n — 1)~—cells onto Z which map trivially to X, when adds a
copy of Z[m X" to H,(X, Z), thereby making it free. Thus, we conclude
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Theorem 2.11 (Wall, [18]). Let X be a finitely dominated space. Then X is a
finite CW complex (up to homotopy equivalence) iff w(X) = 0.

Moreover, if X is dominated by a CW complex of dimension n and w(X) = 0,
then X has the homotopy type of a finite CW complex of dimension n.

Corollary 2.12. If X is a finite CW complex and is dominated by another finite
CW complex of dimension n, then X has the homotopy type of a finite CW complex
of dimension n.

Running the same argument in the relative context shows that

Corollary 2.13. If (X, A) is a finite relative CW complex and is dominated rel
A by a finite relative CW complez (Y, A) of dimension n (i.e. Y is obtained from
A by adding finitely many cells of dimension < n), then (X, A) is a finite relative
CW complex of dimension n.

To ensure the theory is not vacuous, there are two things we should verify:
1. There are finitely presented groups G with Why(G) # 0.

2. For each finitely presented group G and n € Whq(G), there is a finitely
dominated space X with m X = G and w(X) =n.

We leave the readers to investigate (2) themselves, which is a simple direct con-
struction. On the other hand, (1) is more difficult. We shall discuss a rather special
case.

The first observation is that for any commutative ring R, there is a determinant
map

det : Ko(R) — Pic(R),

sending a projective module to its top exterior power (it may or may not help to
think of projective modules as locally free sheaves). This is well-defined because
det(P @ P') = det P ® det P'. Moreover, this is surjective, since the determinant
of a line bundle is the line bundle itself.

Since the determinant of a free R-module is trivial, the determinant map factors
through Ky(R). Thus, if we want to show that Ko(R) is non-trivial, it suffices to
show that Pic(R) is non-trivial.

For Z[G] to be commutative, we must pick G to be an abelian group, and the
simplest possible example is G = (), a cyclic group of prime order. There is a
natural map

Z|Cp] — Z[Gp) = Oqic,);
sending the generator g to (,. This has kernel generated by 14 g+ -+ + g?~ %



It was shown by Rim [13, Theorem 6.24] that this induces an isomorphism on
K. In fact, the determinant map is an isomorphism [I3, Theorem 6.19]. So we are
left with the problem of computing the class group of QI[(,].

This is a problem better left for a number theorist to solve. I shall merely
report on their discoveries.

Theorem 2.14. Cl(QI[(,]) vanishes for p < 23, but is non-zero for p = 23. Il

See https://oeis.org/A055513 for a detailed list and some references, and
[19] for general theory.

3 THE WHITEHEAD TORSION

We now know when a CW complex is homotopy equivalent to a finite CW complex.
Now suppose we have two finite CW complexes X, Y, and a homotopy equivalence
f X — Y between them. Can we “construct” this homotopy equivalence in
finitely many “steps”? To be precise, we want to allow for the following two
operations:

1. We can replace X with X Vv DF, or vice versa.

2. We can “slide” the attaching map of an n-cell along another n-cell:

We then say a homotopy equivalence f : X — Y is “simple” if it is given by
performing finitely many of the above steps to X. We shall, as before, come up
with an algebraic obstruction to the simplicity of a homotopy equivalence. We
will not show (but it is true, see [20, Chapter 13]) that a homotopy equivalence
is simple in this sense if the obstruction vanishes. Instead, we define a homotopy
equivalence to be simple if the obstruction vanishes, which is all we need for the
s-cobordism theorem.

Algebraically, a CW structure on X gives us a free m X-chain complex quasi-
isomorphic to C,(X). This almost comes with a preferred choice of basis, except
that there is not a unique lift of the cell to the universal cover, and the ordering of
the cells is not canonically defined.

Putting these issues aside, we from now on assume our chain complexes are all
finite and comprised of free R-modules (for a fixed ring R) with a preferred choice
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of basis. We are then led to looking at when a homotopy equivalence of such chain
complexes is simple. Equivalently, passing to the mapping cone, when a contractible
chain complex is “simply contractible”. On the level of chain complexes, the two
operations above correspond to

1. Adding R to degrees ¢ and ¢ + 1 and taking the identity map on them.
2. Performing column operations on the differentials.

A bit more should be said about (2). Performing column operations is the same as

changing the basis of the source. Thus, if we have a sequence A L. B2 ¢ and we
perform column operations on g, then we must perform analogous row operations
on f if we want it to remain a complex. Geometrically, this is the observation that
if we slide the attaching map of an n-cell over another n-cell, then we must modify
the attaching map of the n + 1-cells accordingly. At the end, we will focus on chain
complexes concentrated in two adjacent degrees, so (2) becomes “Perform row and
column operations on the differentials”.

The first observation is that with operations (1) and (2), we can replace our
chain complex with one concentrated in two degrees only. Suppose our chain
complex ends like

ALl sp_2,¢ s 0

Since C' is free, we can use (1) to add copies of C' to the positions of A and B:

Aac 12 Bao 2% ¢ s 0

Now since our complex was acyclic, there is a chain contraction, which in the lowest
degree means a section s of g. This section instructs us how we can perform column
operations on ¢ 6 0 to turn it into g @ 1¢, and a bit of linear algebra exercise shows
that the corresponding row operations on f @ 1 will leave us with

AaC L% Ba o 229 ¢

e

We can now perform (1) again to end up with

ApC f®s>B s 0 s 0.

While s is not well-defined, it is well-defined up to an element in the kernel of g, i.e.
an element in the image of f. So f & s is well-defined up to a column operation.

By iterating this, we are left with a chain complex concentrated in two adjacent
degrees, and the differential is a single N x N matrix.



Definition 3.1. Let R be a ring. We define

GL(R) = colim GL,(R),

n—oo

where the inclusion GL, (R) — GL,11(R) is given by

A 0
A»—>(0 1).

We then define K;(R) to be the quotient of GL,(R) by the subgroup generated by
elementary row and column operations.

Then a matrix with coefficients in R up to the operations defined in (1) and (2)
is exactly an element of K;(R).

In fact, the subgroup generated by row and column operations is a normal
subgroup, and turns out to be [GL(R), GL(R)]. So K;(R) is an abelian group. To
show this, one simply writes out explicit formulas for commutators in terms of row
and column operations and vice versa, which is done in [I1].

By more linear algebra exercise, we can describe the result of iterating the
above procedure as

Definition 3.2. Let (C., d.) be a acyclic chain complex, and let ¢, be a contraction.
Write Cogq and Ceyen for the direct sums of the odd and even parts respectively
with the inherited basis. We define the Whitehead torsion 7(C,) € Ki(R) to be
the class of the matrix of d, + c,.

If f:C, — D, is a quasi-isomorphism of chain complexes, the Whitehead
torsion 7(f) is defined to be the Whitehead torsion of the mapping cone.

The fact that this doesn’t depend on the choice of ¢, follows from the fact that
the procedure described previously is well-defined up to column operations. One
can also prove this directly, disregarding the previous discussion completely, which
is again done in [I1].

An honest mathematician would carefully explain how we should order the
basis when we define Cyqq and Ceyen (and the mapping cone), or else the result will
be defined only up to a sign. However, in our geometric application, there is no
ordering of the basis in the first place, and instead, we consider

Definition 3.3. If G is a group, we define the Whitehead group to be
Wh(G) = Why(G) = K1(Z|G))/{%g : g € G}.

We can then unambiguously define



Definition 3.4. If f: X — Y is a homotopy equivalence of finite CW complexes,
then the Whitehead torsion w(f) € Wh(mX) is defined to be the Whitehead
torsion of f, : C¢N(X ) — Cfeu(f/), where the bases are given by any lift of the
cells of X and Y respectively. Note that a cellular approximation has to be chosen,
and (the mapping cone of) f, will be well-defined up to column operations.

A homotopy equivalence with trivial Whitehead torsion is said to be a simple
homotopy equivalence.

Again to show our theory is non-vacuous, we need to show that Wh(G) is not
always zero. Observe that the determinant map det : K;(G) — Z[G]* induces a
natural surjection

det : Wh(G) — (Z[G])" /{=g}-
Thus, it suffices to show that (Z[G])*/{%g} is not always zero.
Example 3.5. Let ¢ be the generator of Cs. Then in Z[C5], we have the identity
t+t ' —D)E+t2-1) =1
Thus, t + ¢ — 1 is a non-trivial unit, and Wh(Cj) is non-trivial.
On the other hand, an important result is
Example 3.6. By the Smith normal form theorem, Wh({e}) = 0.

The existence of finitely dominated CW complexes with prescribed Whitehead
torsion will be discussed when we talk about the s-cobordism theorem. Instead,
we have a more serious problem to address.

The definition of the Whitehead torsion depends crucially on the CW structure
on our topological space. It is true that the Whitehead torsion is a topological
invariant. Equivalently, every homeomorphism is a simple homotopy equivalence.
This is a hard theorem by Chapman [2]. For our purposes, we will need the following
very specific result:

Theorem 3.7. Let W be an h-cobordism between M and N, i.e. a cobordism where
the inclusions v : M — W and (/' : N < W are homotopy equivalences. Then w(t)
is well-defined if we pick a CW structure induced by a Morse function.

Proof sketch. First observe that subdividing any of the cells in the CW structure
does not change the Whitehead torsion. By performing such subdivisions, one
can show that the CW structure given by a Morse function is equivalent (for the
purposes of Whitehead torsion) to that given by a smooth triangulation, i.e. a
triangulation where the inclusion of each simplex is a smooth map.

It is a theorem of Whitehead that after subdivision, any two smooth trian-
gulations are isomorphic. Note that this is not the same as saying they have a
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common refinement. Instead, if (K, L;) are (subdivisions of) the triangulations
exhibited by maps ¢; : (K;, L;) — (M, W), then there is an isomorphism of abstract
simplicial complexes ¢ : (K1, L) — (K3, Ly), which need not respect ¢;. Then
the Whitehead torsion induced by the two triangulations differ by an action of
(p2 09 0 ¢ 1)s : Wh(m W) — Wh(mW). As part of the statement of Whitehead’s
theorem, we can make ¢, 0 1) o ¢ ' as close to the identity as possible, and in
particular we can choose it to act as the identity on ;. So (¢ 0 1) o ¢ '), is also
the identity, and hence the Whitehead torsion is well-defined. O]

See [I1] for a slightly less sketchy proof.

4 THE s-COBORDISM THEOREM

We are now ready to tackle the s-cobordism theorem. Suppose we are given an
h-cobordism (W, M, N). When is this trivial? In other words, when is there an
isomorphism W = M x [0,1]?7 In 1962, Smale [16] showed that this is always
the case if M is simply connected. On the other hand, since M x [0,1] can
be obtained from M by replacing each n cell D® with D™ x D!, one sees that
T(W, M) =1(t: M — W) =0 is a necessary condition for W to be trivial. In fact,
this is sufficient.

Theorem 4.1 (s-cobordism theorem, [9] [17]). Let (W, M, N) be an h-cobordism
of dimension n > 6. Then W s trivial if and only if the Whitehead torsion
(W, M) = 0.

The proof we present is adapted from [7].

Remark 4.2. We defined an h-cobordism to be one where M, N — W are
homotopy equivalences. In practice, Lefschetz duality implies it suffices to check
that one of the inclusions is a homotopy equivalence, and both maps induce
isomorphisms on 7.

Before we begin to prove the theorem, we state two standards result from
differential topology that we will use frequently. See, for example Chapter 6 of []
(he only proves a special case of the second theorem, but the same proof applies).

Theorem 4.3. Let f : M — N be a continuous map between manifolds, smooth
on a closed subset A C M. Then f is homotopic rel A to a smooth map.

Theorem 4.4. Let f : M — N be a smooth map between manifolds which is an
embedding on a closed subset A C M. Ifdim N > 2dim M +1, then f is homotopic
rel A to a smooth embedding.
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The idea is to show that every simplification move allowed in the definition of
the Whitehead group can be geometrically realized in our manifold. Since each of
those moves had a geometric motivation, we might expect this to be straightforward,
but there are two subtleties:

e In our original motivation, we worked with CW complexes, but here we need
to take care of the smooth structure.

e In homology, there can be cancellation, i.e. if my attaching map winds around
a loop 7y once, does something else, and then winds around v in the opposite
direction, then these two contributions cancel in homology, but not necessarily
geometrically. We thus need to be able to eliminate things geometrically
when there is cancellation in homology.

The first problem will be addressed by the theory of handlebody decompositions,
and the second by Whitney’s trick. We will get to Whitney’s trick when we need
it, and instead start by discussing handlebody decompositions.

Definition 4.5. An n-dimensional handle of index ¢ is D? x D" 4. If M is a
manifold and ¢? : STt x D"¢ — 9;W is an embedding, then we define

M + (¢9) = M Uge D% x D9,

We will use (¢?) to refer to the handle itself, while ¢? is the attaching map. We
adopt the following terminology:

e The core is D? x {0}.

e The transverse sphere is {0} x S"~971.

transverse sphere

Figure 1: An example of a 1-handle for n = 2
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It is a standard result in Morse theory that given a cobordism W between 0yWW
and 01 W, we can always find a handlebody decomposition

W = 8 x [0,1] + (¢ + - -+ ().

In this section, all isomorphisms are required to fix gyW.

From a purely homotopy theoretic point of view, adding a ¢-handle is the same
as adding a g-cell by retracting to the core. Thus, a handlebody decomposition
simultaneously gives rise to a CW structure, and the intersection between the
attaching map and the transverse sphere encodes the differentials in the CW
structure. To actually get the skeletal filtration, it is convenient to arrange our
handles in increasing order of index.

First observe that if we have two isotopic attaching maps, then standard
differential topology results imply there is a diffeomorphism of W that sends one
of the attaching maps to the other. So we know

Lemma 4.6 (Isotopy lemma). The diffeomorphism type of W + (%) depends only
on the isotopy class of 1. ]

Consequently, we get

Lemma 4.7 (Commutativity lemma). Let W be a cobordism, and q < r. If
V=W+ @)+ (97,

then there is some ¢ such that
V=W (69 + (¢).

Proof. For dimensional reasons, transversality allows us to isotope ¢? so that the
attaching map does not intersect the transverse sphere of (¢/"). We then flow ¢¢
down along the handle to not intersect (") at all. O

We can now write our handlebody decomposition of a cobordism W as
po p1 Pn
W =0W x [0,1]+> (¢0) + D (&) + -+ > ().
i=1 i=1 i=1

We then have a corresponding cell structure with each (¢7) corresponding to a
g-cell, and using local degrees, we see that in the cellular chain complex, the number
of copies of (¢7) in d(gb‘j-“) is the number of times gb}”l hits the transverse sphere
of (¢!), counted with orientation.
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The corresponding filtration of W is given by

W= 0W x [0,1]+ 3 () + > (60) + - + > (4))

(91Wq = an — 80W X {0}
Pg+1
KW, = 01w, — [ #1(S7 x int(D"77)).
i=1
The last definition is useful if we want to do things without risking messing up our
(¢ + 1)-handles.

We can now begin our program to geometrically realize the algebraic operations
we previously discussed. Our ultimate goal is to modify the handlebodies so that
there are no handlebodies left at the end. For this to be possible at all, we need to
be able to perform the operation

<A O) .y
x 1

This is given by the cancellation lemma:

Lemma 4.8 (Cancellation lemma). Let W be a cobordism, and suppose we attach a
q-handle (¢?) and then a q+ 1-handle (91) to W. If 7T1(S9x {0}) is transverse
to the transverse sphere of (¢7) and they intersect at exactly one point, then there

is a diffeomorphism from W to W + (¢9) + (97) fizing O,W .

We call (¢), (4911 a cancellation pair.

In a sense, the lemma is self-evident. We will argue that this is indeed the case
in two steps — we first describe a “standard model” of a cancellation pair, where
it is self-evident that the conclusion holds. It is then also self-evident that any
cancellation pair must be equivalent to the standard model in an appropriate sense.

Example 4.9. The picture one should keep in mind is the following:

CA

Figure 2: A 2-handle cancelling a 1-handle
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The reader is also encouraged to draw a picture of a 1-handle cancelling a
0-handle themselves.

To put these in words, we write S for the northern and southern hemispheres
of S9 respectively. Suppose we are given an embedding

ST X DV Ug, x§yTa SLx D' — oW,

where we fix an identification of S7'"¢ with D"~'=9 and S9! with 9S%. We
can use this to attach a ¢ handle to ;W via ¢? = p|ga-1xpn-a. We then attach a
(¢ + 1)-handle by defining two functions

It ST x DT — 9 (W + (7))

separately that agree on the intersection, and glue them to give a 14+!.

We simply let 17" =y §7xpn-1-a, and we define 2! to be the inclusion

ST DI 2 D §170 s DY 7 = (g7 € 0 (W (6)).
One then sees that W + (¢7) + (¢7™!) is diffeomorphic to W.

In general, the reason a cancellation pair fails to look like the standard model
is that 1)|sexf0y can behave in completely crazy ways outside of an infinitesimal
neighbourhood of the transverse sphere, and there is no control of what 1 does
outside of the S?x {0} at all. All we know is that infinitesimally, near the transverse
sphere and S? x {0}, everything is extremely well-behaved. Thus, what we have to
do is to push all the badness far away enough.

Proof of lemma. By transversality and the implicit function theorem, we can iso-
tope ¥ so that in a small neighbourhood U of the transverse sphere, the image of
¥|gax oy looks like

0(57  {0})
| v

Note that this picture is in the standard coordinate chart of (¢?) = D?x D™ %, which
is a stronger statement than “there is a coordinate chart where the intersection
looks like this”.

We can further isotope v, fixing ¥|gsx {0}, so that in a small neighbourhood of
S x {0}, the image looks like

| v
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But we can shrink S? x D"~ 9 radially in the D"~ ? direction so that the image of ¢
is exactly this.

Now apply a flow on 9, (W +(¢?)) that sends everything in 9(¢?)\U to something
outside of (¢?), and expands U “linearly” to all of 9(¢?). Then this looks exactly
like the standard model. O]

The natural progression would be to prove that we can perform column opera-
tions. However, to talk about such deeds, we ought to take the universal cover of
W and work with homology with local coefficients. Thus, it would be nice if our
handles don’t change the homotopy type of W. In other words, if we have no 0- or
1-handles.

This will be achieved by replacing g-handles with (¢ + 2)-handles, as we did in
the algebraic case. If we have a ¢-handle that we want to get rid of, the strategy is
to introduce a pair of (¢ + 1) and (¢ + 2) handles that cancel each other, such that
the g-handle and (g + 1)-handles also cancel each other.

We need to do this in two steps. First we find a (¢ 4+ 1)-handle that kills the
g-handle, and then a (¢ + 2)-handles that kill the (¢ + 1)-handle. This is not always
possible. For example, if the g-handle is responsible for killing off a homology
class in degree ¢ — 1, and there is no other g-handle that can do the job, then it is
impossible to add a (¢ + 1)-handle to eliminate the g-handle.

Fortunately, if the attaching map of our g-handle is null-homotopic, then we
would not meet this obstruction. Geometrically, we would want a stronger condition,
which adds the word “embedding” to the above condition.

Definition 4.10. We say an embedding ¢ : S9! x D"9 — ;W is trivial if it
extends to an embedding D? x D"~ — o, W

If we have an embedding S?! < 9,W, we say it is trivial if we can extend it
to a trivial embedding S9! x D""9 — O, WW.

It is immediate from the cancellation lemma that

Lemma 4.11. If ¢ is a trivial embedding, then we can add a (q + 1)-handle ¢!
to W + (¢7) such that W = W + (¢9) + (911 relative oW . O

Now to find a (¢+2)-handle that kills off the (¢+1)-handle, we have the problem
that if the (¢ + 1)-handle (¢?!) is responsible for killing off the g-handle, then it
should be problematic if we want a (¢ + 2)-handle to kill off the (¢ 4+ 1)-handle.
What we need is that there is some other existing (¢ 4 1)-handle (x(¢+1)) that kills
the g-handle (or maybe multiple of them), so that in the presence of (¢411), the
attachment map of (¢?™!) is now trivial.

Lemma 4.12 (Elimination lemma). Suppose 1 < ¢ < n — 3, and that

Pg+1

W= 0oW x [0,1]+ Y (61 + D (&) +---+ > ().
=0 =0 =0

16



Suppose there is a 1 < j < p, and an embedding 7 : S x D"~ 171 — KW, such
that

1. YT gaxqoy is isotopic in W, to an embedding VI that intersects the

transverse sphere of (gb?) at one point transversely, and is disjoint from the
transverse spheres of the other q-handles.

2. T gaxqoy is isotopic in O Wyyq to a trivial embedding @/}‘2”1.

Then W s diffeomorphic relative OgW to a cobordism of the form

OW % [0,1] +> (¢ + D () + () + ) (@) -+ ().
i i=1 =1 =

Note that the condition that 7™ maps into 9;W, instead of just 9, W, is not
very important. It is needed only so that the condition (2) makes sense.

Proof. We may extend wa and the isotopies to be defined on S x D"~ 971 (we
need a framing on the normal bundle, but we can carry that along the isotopies).
We may also assume that there are no handles of index > g + 2, since we can add
them back after we are done with this business.

By the previous lemma, there is some 9772 such that W = W + (427) 4 (1772).
But by the isotopy lemma, this is diffeomorphic to what we get if we attach (¢/¢™")
instead of (¢4*"), which by the cancellation lemma, is diffeomorphic to what we

get if we didn’t have (¢7) + ({™). O
With the elimination lemma, we can now prove

Lemma 4.13. Let W be an n-dimensional cobordism with n > 6. If the inclusion
oW — W is 1-connected, then there is a handlebody decomposition of W with no
0 or 1 handles.

Proof. We pick an arbitrary handlebody decomposition, and use the cancellation
and elimination lemmas to get rid of the 0 and 1 handles.

e To eliminate the O0-handles, we apply the cancellation lemma directly. Since
every O-handle introduces a new connected component, if there is a 0-handle,
then there must be a 1-handle (') that connects the O-handle (¢°) to
OoW x [0,1]. The boundary of the core of (¢!) is just two points, and there
must be exactly one of them on the boundary of (¢°), which is also its
transverse sphere. So the conditions of the cancellation lemma are satisfied,
and we can eliminate (¢") and (¢!). Repeat until there are none left.
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e To eliminate the 1-handles, the elimination lemma says we need to find
appropriate embedded S* x D""%’s. We shall first construct an appropriate
embedding ¥? : S' < 99W;, and then formal arguments will allow us to
extend it to an embedding of S* x D"~2,

Fix a 1-handle (¢'). We already know what half of ¢* should be, namely
PP 1S3 = D= D x{z} C D' x D" = (¢') for our favorite z € D"
To satisfy the first condition, we want 1?1 to lie in )W, (this is helpful
also because it means our v? will not interfere with other 1-handles). To
satisfy the second condition, we will later argue that 1)? being nullhomotopic
is enough.

First note that 0yW = 0, W, since we have no 0-handles, and 9y Wy — 07 W,
induces isomorphism on ;. Instead of considering loops, we may as well
consider paths between the two end points of 1)?| 515 which we may identify
with 71 by fixing a path between the two end points.

Since YWy — 01Wy — W induces a surjection on 71, we may find a path
in 9;W, that is homotopic to 12| st inside W, which we may assume is an
embedding. Gluing this to ¥?| st then gives a map P? . St — 0,W; that is
nullhomotopic in W and meets the transverse sphere of (¢!) transversely at
one point.

A priori, ¥? may not map into O;Wy, but just 9,W;. However, recall that
the attaching maps of the 2-handles embed copies of S x D"~2, and since
n is large enough, we may shrink each of these attaching maps within the
D"=2 50 that the image of 1% doesn’t hit these attaching maps.

Finally, let h be a null-homotopy of 42, which we may again assume is an
embedding. Then the contractibility of D? implies the normal bundle is
trivial, and hence by the tubular neighbourhood theorem, 1% can be extended
to a smooth embedding S! x D"2 — 9;W;, and h exhibits ¢? as a trivial
embedding. O]

We managed to get away with not having to perform any column operations
above, but we now genuinely need it. Observe that there is a Hurewicz map

Ta(Wy) — (W, Wy 1) — Hy(Wy, Woy) = Cy(W,8,W),

and the final group is freely generated by the cells (¢7). If f € m,(W,), we will
write [f] for the image in C,(W,9,W). Crucially, if f is the attaching map of
(g + 1)-handle (¢7t1), then [f] = dgy1 (7).

Lemma 4.14 (Modification lemma). Let 0 < ¢ <n —2 and f : ST — W, be an

embedding, and let x; € Z[mW| for j =1,...,pgy1. Then there is an embedding
g: S — 0;W, such that

18



1. f and g are isotopic in OyWyyq.

2. For any lifting f : S9 — Wq of f, there is a lifting g of g such that in
C,(W,9,W), we have

Pq+1

3= 171+ 2wy (™),

Proof. 1t suffices to consider the case where we are just adding a single +~ -
dq+1(¢?+1) for some v € m W.
Fix any z € S"7972 = 9D" 9! and consider

t:892 57 x {2} — S x S22 9(pTt) — 0, W,

Observe that this in fact maps into 07 W, since 07W, is defined to remove the
interior of the image of the attaching maps.

Now pick any path w between the image of f and the image of ¢, which we
may assume is an embedding, and form the connected sum of f and ¢ along (a
thickening of) w. Call this g.

Figure 3: A schematic picture of the modification along a 2-cell in n =3

For any lift f of f, we can pick a lift § that agrees with f on the points ¢ and
f agree. This will then have the property that

9] = /] £9" dga (]

for some v € mW. Note that we can replace w by composing with any loop, and
the result is that + will be multiplied by the corresponding class. So we can arrange
7' to be anything we like. If we precompose ¢; by a degree —1 diffeomorphism
S? — §9, then we can change the sign before 7/ as well. O]

Unfortunately, a priori, knowing what value [f] takes in C,(W, 50\1/17) is not
very useful. This is the problem we discussed before, that in homology, there can
be cancellation. To fix this, we use a result known as Whitney’s trick, which we
shall not prove. We shall only state a special case we need:
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Theorem 4.15 (Whitney’s trick, [10, Theorem 6.6]). Letn >5 and 2 < ¢ < n—3.
Let M be an n-dimensional manifold, N C M an (n — q)-dimensional submanifold,
and f : ST — M a smooth embedding transverse to N.

Suppose x,y € N N f(S9) have opposite intersection numbers, and there are
paths y1,%2 from x to y lying in N and f(S9) respectively such that v, - 75" is
null-homotopic. Then f is isotopic to a map whose intersection with N is exactly

NN fS)\A{z,y}-
This allows us to prove

Lemma 4.16 (Homology lemma). Let n > 6, and suppose

W 2= W x [0,1] + ) (6)) + D (dF) + -+
=1

i=1

Fir2<qg<n-—3andiye€{1,2,...,p,}. Let f:S9 — 0,W, be an embedding.
Then the following statements are equivalent

1. f is isotopic to an embedding that intersects the transverse sphere of ( ;-10)
at one point transversely, and is disjoint from the transverse spheres of the
other q-handles.

2. If f: 97 — Wq is a lift of f to the universal cover, then there is v € mW
with

[f] =27 (1)

Proof. Recall that if f meets the transverse spheres of ¢g-handles transversely at
finitely many points x; ; € (¢), then we have

[f] = ZEW’ i © (D7)

Li,j

for some signs ¢€;; € {£1} and v;; € mW. Thus (1) = (2) is clear. For the
converse, the fact that [f] is also equal to just +7[¢] | means there should be a lot
of cancellation on the right, which we want to translate to the geometric condition
of being able to eliminate the intersections.

To do so, we need to be precise about what these v; ; exactly are. Note that | f]
and (¢7) are only well-defined up to an element v € mW. To fix these, we make
the following choices. Identifying S? with its image under f, we

e Pick a basepoint y € S C 0,W,.

e For each (¢}), pick a favorite point z; and a path from z; to y.
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e For each z; j, pick a path u; ; from y to z; ; in 5%
e For each w; ;, pick a path v; ; from x;; to z; in the transverse sphere of (¢7).

The path ~; ; is then given by the composition u;; - vi; - w € w1 (Wq,y).
Now by assumption, we have [f] = +v(¢{,). So we have

+y - (¢1) = e vy (60).
Ti 5

But since (¢7) form a Z[m; W-basis of C,(W), if there is more than one point of
intersection, we can find z; ; and X j» such that

Yig = Vg €ij = TEiLH-

Moreover, if we take the explicit representative of 7; ; and ~; j» above, we see that
Yij 71.77;, is exactly a loop of the sort required by Whitney’s trick to eliminate the
intersections. So we can inductively remove intersections until we are left with a
single point of intersection with (¢j ). O

With all the tools in place, we can now continue with our original program.

Lemma 4.17 (Normal form lemma). Let W be an oriented compact h-cobordism
of dimension > 6. Fix an integer q with 2 < q < n — 3. Then there is a handlebody
decomposition with only handles of index q and q + 1.

Proof. Observe that if we have a handlebody decomposition of W, then using the
symmetry between n and (n — ¢) in D" x D""9, we can “turn it around” and view
it as a handlebody decomposition of W starting from 0,W instead, and each ¢
handle becomes an (n — ¢)-handle. Morse-theoretically, this is the same as replacing
a Morse function f by —f. Thus, it suffices to show that we can eliminate all
handles of degree < gq.

We do this by induction on ¢, where we have already taken care of the ¢ =1
and ¢ = 2 case. For higher ¢, we make use of the elimination lemma. Suppose

(¢9) is a g-handle. Then since H, (W, 8/\1/[//) = 0, we know there exists z; € Z[m W]

such that
(¢) = > wjdgra(ef™).

Take any trivial embedding ¢ in 9;W,. Then [Y%!|gixy] = 0. By the
modification lemma, there is an embedding ™ : S x D"~ — 9y W, such that

D suq0)) = (07 soqoy] + Y 25 dgan (671) = (47).

So by the elimination and homology lemmas, we can replace (¢?) by a (g + 2)-
handle. O
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Theorem 4.18 (s-cobordism theorem). Let (W, M, N) be an h-cobordism of dimen-
sionn > 6. Then W is trivial if and only if the Whitehead torsion (W, M) = 0.

Proof. Take a handlebody decomposition with handlebodies in degree ¢ and g + 1
only, for suitable g. Then up to a sign, the Whitehead torsion is the differential in
the corresponding CW structure. We know that this differential can be reduced to
nothing via the column operations, multiplication by +¢ for g € m; W, and reducing

A0
(O 1)WA.

The ability to perform column operations is given by the modification lemma;
multiplication by 4g¢ is just changing the choice of lifts and has no geometric
significance, and the last operation is given by the cancellation lemma. So we can
reduce our cobordism to the trivial cobordism. O]

Previously when discussing the Whitehead torsion, we promised to prove some
existence results about non-trivial Whitehead torsions. With the machinery in
place, it is now easy. Given an element [A] € Wh(G), pick a manifold with
fundamental group G of large dimension, say 57, and then construct a handlebody
decomposition with handles of degrees, say, 30 and 31, according to the matrix A.
This will then be an h-cobordism with non-trivial Whitehead torsion.

5 SIEBENMANN’S END THEOREM

We shall use the ideas developed so far to understand the following problem:

Problem 5.1. Let M be an open manifold possibly with boundary. Can we find
a “completion” M, namely a compact manifold with boundary and an inclusion
M — M such that M \ M is a union of boundary components?

This problem was first solved by Siebenmann in his thesis [14], but the exposition
here is based on [4, Chapter 12].

Example 5.2. The surface of infinite genus is not the interior of a manifold with
boundary.

Given an open manifold M, we first ask how many ends M has:

Definition 5.3. Let M be an open manifold with boundary. We say M has k
ends if there is a compact set K such that for any K’ O K compact, the set M \ K’
has k£ many unbounded components, i.e. components with non-compact closures.

It is clear that if such a K exists, then k£ does not depend on the choice of K.
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Example 5.4. R x S! has two ends, while the open disk D" has one end.

We would like to focus on the case where there is one end. This is where our
assumption that M can have boundary comes in — we can simply consider (the
closure of) each unbounded component of M \ K separately. Thus, we from now
on assume there is only one end.

To tackle this problem, we first think about what M would look like if it can
be completed. The crucial property is that boundaries of manifolds admit collars,
i.e. if OM is the (new) boundary of M, then the inclusion M < M extends
to an embedding OM x [0,1] < M under the identification M = M x {0}.
Thus, if M can be completed, we should be able to find a collar V' C M such that
V = 0V x (0,1], and this is our goal.

This sounds reminiscent of the s-cobordism theorem, but there is a key difference,
namely that V' is not fixed. For example, suppose that we find that V' is built by
adding three 2-cells to (0,1] x V. What we will do is to simply include these
2-cells in K so that they are no longer part of V! Thus, we do not have to assume
our end is homologically trivial, but instead we will manually tweak it to get rid of
homology.

After we get rid of all homology groups, it turns out we need not worry about
problems of Whitehead torsion, since we can always push them away to infinity.
This is made precise by the following lemma:

Lemma 5.5. Suppose we have an infinite sequence
V=VioWho--
of connected submanifolds such that
1. (\V;=0
2. m(Viyr) — m(V;) is an isomorphism for all i
3. The inclusions OV; — V; are homotopy equivalences for all i.
Then V =0V x [0,1).

Proof. Take C; = V; \ V;H. Then by the homology long exact sequence for
(f/i, o (§VVZ) and excision Hk(f/i, C’Z) = Hk(f/iﬂ, 8/‘/:1), we know that H*(C}, 5\‘//1) =
0 for all i. So each C; is an h-cobordism. Picking a collar neighbourhood of 9V,
we can schematically describe our V' as

Cl tI'iV CQ
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The point is that the Whitehead torsion is additive, so we can find a —C with
7(—=Ch) = —71(C1), so that C;U—C} and —CyUCY are trivial. We can then describe
our above cobordism as

Cy -Cy| 4 Cy

We can now define a diffeomorphism 0V x [0,1] — C; U —C;. We then rename
C1+ Cy as Cy, construct a diffeomorphism 0V x [%, %] — Cy U —(%, and keep going
on until we get a diffeomorphism 0V x [0,1) — V. O

Definition 5.6. Let M be as before. A neighbourhood of infinity is a closed
connected submanifold V' C M (with boundary) such that M \ V' is compact.

There will always be situations such as the surface of infinite genus where there
is no hope in finding a collar. Thus, we need to impose the following condition.

Definition 5.7. We say (the end of) M is strongly tame if every neighbourhood
of infinity has the homotopy type of a finite CW complex.

This is not a standard definition. Instead, in the literature, it is more common
to require that the neighbourhoods are finitely dominated, and then there will be
an obstruction to finding a collar, namely Wall’s finiteness obstruction. In our case,
since we assumed the neighbourhoods are in fact finite CW complexes, there is no
obstruction.

Observe that we don’t have to manually check all neighbourhoods of infinity.
If V'O V' are neighbourhoods of infinity, then V' is obtained from V' by attaching
finitely many cells, since the difference is a compact manifold. So if V' is finite, then
so is V. Thus, we only have to show that there are arbitrarily small neighbourhoods
of infinity that are finite.

As before, it is very important to consider the fundamental group. Intuitively,
we want to talk about the “fundamental group at infinity”, but this is not a group
in general. Instead, it is a pro-group.

Definition 5.8. A pro-group is an infinite sequence of groups
G1<—G2<—G3<—"'

Equivalence of pro-groups is the equivalence relation generated by the following
two relations:

e [somorphisms as diagrams of groups

e Passing on to subsequences (and composing the relevant maps).
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A pro-group is stable if it is equivalent to a constant sequence
GeGe—G«—---
Since equivalent pro-groups have the same inverse limit, we can recover GG by
G =lmG;.

Note that it is important that we talk about the equivalence relation generated
by these two operations. It is possible that two equivalent pro-groups have no
groups in common, since we can pass on to a super-sequence and then remove the
things that were originally there. For example, for any group G, the pro-group

clglglagl...

is pro-equivalent to constant zero sequence.
The following is easy to verify:

Fact 5.9. Pro-groups {G;}, {H;} are equivalent iff there exists subsequences {Gj, },
{H;,} and a commutative diagram

/F%l ~ z/%<i__“

Hjl < Hj2 $ Hjs $ Hj4 <

Gil <

Gig <

Definition 5.10. Let M be as before, and {V;} a nested collection of neighbour-
hoods at infinity with (| V; = (). For each V;, pick a base point x;, and pick paths
v from z; to x;11. The pro-group associated to {(V;,x;,v;)} is

7T1(V1,$1) <f—1 771(‘/27552) <f—2 7T1(Vé,$2) <f—3 M

In general, this pro-group depends on the choice of the paths ;. If we pick
different paths, then we replace each f; by some conjugate. Fortunately, we have
the following easy, purely algebraic result:

Fact 5.11. If {(G;, fi)} is a stable pro-group, and g; € G, then {(Gi, gifig; ')} is
also a stable pro-group with the same inverse limit. O

Finally, observe that if {V;}, {W;} are nested neighbourhoods of infinity with
Vi =N W; =0, then after passing on to subsequences, we may assume

Vi2dWi 2V, 2 W 2+

and so the induced pro-groups are equivalent by Fact [5.11} Thus, it is sensible to
define
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Definition 5.12. Let M be as before. We say M has stable fundamental group
at infinity if the pro-group associated to any (hence all) {(V;, x;,~;)} is stable, and
the inverse limit m ¢ is called the fundametnal group at infinity.

Again, it is clear that if M has a collar, then it has stable fundamental group
at infinity. One might think that tameness guarantees this is the case, but unfortu-
nately for us, this is not the case, and we must impose this as an extra condition
(see [0, Example 3]).

From now on, we assume M has dimension n > 6 and is one-ended, strongly
tame and with stable fundamental group at infinity. We shall proceed to find a
collar.

Definition 5.13. A 1-neighbourhood of infinity is a V' C M such that 70V =
mV = me under the obvious maps.

Proposition 5.14. There are arbitrarily small 1-neighbourhoods of infinity.

This relies on the following (less easy) algebraic lemma, which we still won’t
prove:

Lemma 5.15. Let G, H be finitely presented groups and f : G — H a surjective
homomorphism. Then ker f is normally generated by finitely many elements. [

This is equivalent to the perhaps more familiar fact that a finitely presentable
group is finitely presented under any choice of (finitely many) generators, by
precomposing with a surjection from a finitely generated free group to G.

Proof of proposition. By assumption of stability of 7y, we can find arbitrarily small
neighbourhoods U O V' such that we have a commutative diagram

mU +— mV

LN N

TE < TE <

We wish to first make m V' — 7€ an isomorphism. We know this is surjective, and
the kernel is normally generated by finitely many loops {v;}. Moreover, since these
also lie in the kernel of the map mV — m U, they bound disks in U. Since n is
large enough, we may assume these disks are embedded and disjoint. Then add
tubular neighbourhoods of these disks to V. Again since n is large enough, this
doesn’t affected the connectedness of V', and Seifert-van Kampen implies we now
have m V' — e an isomorphism.

We next want to ensure m0V — m V' is an isomorphism. We first arrange it
to be a surjection. Fix a basepoint in 0V. If we have any loop [y] € mV, we
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can pick an embedding in V' and remove a tubular neighbourhood of it. Then 9V
will now have a loop homotopic to v, and again Seifert—van Kampen implies the
fundamental group of m V' is unchanged. Since 7V is finitely generated, we only
need to do this finitely many times and the map will be surjective.

Finally, we need to clear the kernel of m0V — m V. This is again finitely
generated by the above lemma. So for each generator [y] of the kernel, embed a
disk in V' that kills of v, and remove a tubular neighbourhood. O

We want to perform a similar procedure to get rid of higher relative homology
groups. As in the case of Wall’s finiteness obstruction, we really don’t have to
take much care until we hit the top dimension. We may naively think the top
dimension is n, but in fact, it is n — 2. The reason is that if we think of the end
as a cobordism, then adding n — 1 or n cells would change the m; and 7 of the
ending manifold.

Lemma 5.16. Let V be a 1-neighbourhood of M. Then (V,0V') has the homotopy
type of a finite CW complex of dimension n — 2.

Proof. By Corollary , we only have to show that (V,0V) is dominated rel 0V
by a finite relative CW complex.

Let V' be another 1-neighbourhood contained in V. Let C' = V \ V’. Then
(C,0V,0V") is a cobordism, and Seifert—van Kampen applied to V' = C Ugy+ V'
tells us

mC = m (OV).

So if we think of C' as a cobordism starting from 9V, then 0V’ < (' is 1-connected,
and we can find a handlebody decomposition with no 0- or 1-handles. Thus, in
the dual handlebody decomposition, C' is built from V' by adding handles up to
dimension n — 2. So (C,dV) is a handlebody decomposition with cells of dimension
< n — 2. In particular, it is a finite relative CW complex of dimension < n — 2.
We will show that for an appropriate V’, this dominates V.

We are actually almost done, but since we want our homotopies to fix OV, we
need to do things in a slightly funny way. Fix a proper sub-1-neighbourhood V' of
V. By assumption, there is a homotopy equivalence

X#V’

with X a finite CW complex. The image of f is compact, and so we can find
an even smaller 1-neighbourhood V” such that im(f) C V/\ V”. Then V' \ V"
dominates V' via

V! fog V/\v//: V'
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By the homotopy extension property, we know that V' \ V" dominates V rel 9V,
and V' \ V" has the homotopy type of a finite relative CW complex with cells of
dimension < n — 2. O

With this understanding, we are now ready to prove Siebenmann’s end theorem.

Theorem 5.17 ([14]). Let M be one-ended, n = dim M > 6, strongly tame, and
with stable fundamental group at infinity. Then M has a collar.

The idea of the proof is to just kill off relative homology groups as above, but we
have trouble turning the disks representing relative homology classes into smooth
embeddings in high dimension. The trick is to take handlebody decompositions of
V', which give us relatively concrete handles that we can excise away from V.

Proof. By Lemma [5.5] it suffices to find arbitrarily small 1-neighbourhoods V' such
that 9V < V is a homotopy equivalence, or equivalently, such that their universal
covers have trivial relative homology.

Start with V' a 1-neighbourhood. We will inductively show that we can modify
V such that Hy(V,0V) = 0 for £ < k. Assume this holds for all ¢ < k, and we
want to make it true for £ = k. We will assume k& < n — 2, since for k =n — 2, a
bit more care is needed at some places. .

Since singular chains are compact, and Hk(f/, 0V) is finitely generated, we can
find some other neighbourhood V' C V such that if C' =V \ % , then

Hy,(C,0V) — Hy(V,dV)

is surjective. Moreover, by induction, we may assume H, g(V’ , oV’ ) =0 for ¢ < k.
Sadly, the long exact sequence for (V,C,0V) only tells us

H@(C‘,é\{/):Ofor€<k—1.

Thus, we can take a handlebody decomposition of (C,0V) with only cells of
dimension > k£ — 1, and we need to be careful about the (k — 1)-handles.

Suppose we have a homology class [¢] € Hy(C,dV) that is represented by a
single handle ¢. Then since dg(¢) = 0, Whitney’s trick lets us modify ¢ so that the
attaching map does not intersect the transverse spheres of the (k — 1)-handles, and
then by applying a flow, we may assume it doesn’t hit any of the (k — 1)-handles

at all. Removing ¢ from V then kills off the homotopy class [c] in Hy(C, 1% ).
In general, if we have

[d] = Zni%(ﬁbi), ng € L, 7 € M,

what we do is that we introduce a cancelling pair of k- and (k + 1)-handles, say
¢ and Y. We can then modify the attaching map of ¢ as in the proof of the
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[Modification Lemmal to add g;¢; with the appropriate multiplicities. Then ¢ would
represent the class [¢] (the job of ¥ is now to identify (¢) with > n;v:(¢;)). We
then excise ¢ as above.

Since H, k(é ,0V) is finitely generated, we only have to excise a finite number of
such handles, and the induction step is completed.

At k =n—2, we need to take a bit of care. To ensure we do not introduce extra
homology in higher dimensions, we must ensure Hy(V,0V) is a free Z[r e]-module.
Recall that (V, 0~V) has the homotopy type of a relative CW complex of dimension
< n — 2, with trivial homology in degrees < n — 2. So as in the case of Wall’s
finiteness obstruction, we deduce that Hy(V,9V) is stably free. We can then excise
trivial (n — 3)-handles to make this actually free.

To eliminate Hn_2<‘~/, oV ), we can no longer apply the procedure above, since
we do not want to introduce (n — 1)-handles, which could potentially mess up our 7.
So we have to be a bit more careful (excising (n — 2)-handles is itself an operation
that could potentially mess up ;. But we have hope if we don’t mess up so much).

As above, pick a smaller neighbourhood V’ such that H,_o(C,0V) — H,_o(V,0V)
is surjective. Then the long exact sequence

0— Hn—2(07 éT/) - n—2<‘77 é\‘—//) - n—2(‘77 é) - n—S(éa 5\‘7) — 0

shows that the first, and hence the last map are both isomorphisms. Hence (by

excising trivial handles from V*) we may assume that Hy(C, V) is free for k = n—2
and n — 3, and vanishes otherwise.

As in the normal form lemma |4.17, we may pick a handlebody decomposition
of (C,0V') with handles concentrated in degree n — 3 and n — 2. Then the exact
sequence

0 — H, o(C,V) — C<L(C, V) — C(C,0V) — H,_5(C,0V) — 0

splits by freeness. In particular, H,_o(C, oV ) is a direct summand of C<L(C, oV ).
We want to arrange the handles so that a subset of them forms a basis of
H,_5(C,0V).

This is purely algebraic. Pick any basis a of H,_y(C, oV ), and complete this to

a basis a U b of C%L(C,0V). Then under a U b, the basis of C<?L(C, V) under
the handlebody decomposition is given by an invertible matrix, say M. We now
add |a U b| many cancelling (n — 2)- and (n — 3)- pairs, so that the matrix is now

of the form
M 0
0o I)°

We would be done if we can perform elementary row and column operations (via the
modification lemma) so that the top left-hand corner is an I instead, the bottom
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right-hand corner can be anything, and top-right corner vanish. This is possible by
elementary linear algebra (this requires M to be invertible, which is why we didn’t
do this in the past).

Once this is done, we can then apply Whitney trick and excise these handles
as above. To conclude the theorem, we need to check that the result U is still a
1-neighbourhood. To see this, observe that it is clear that U — U preserves my,
since U is obtained from 0U by adding (n — 3)- and (n — 2)-handles. Similarly,
m(0U) = m(CNU). On the other hand, C N U is obtained from 0V’ by adding 2-
and 3-handles, so m(0V') — m (C N U) is surjective. But the composition

m V') - m(CNU) - mC —mV

is an isomorphism. So 7 (0V') — m(C' N U) is also injective. Then we are done.
[l

It is interesting to ask ourselves, how many ways are there to complete M to a
manifold with boundary? The first guess might be that it is unique, but it turns
out not. Suppose we complete M into M = M U E. Given any h-cobordism N
with 9yN = E, we can form

M' = M Ug N.

This is in fact another completion of M. Indeed, using the trick in Lemma [5.5] we
see that N\ ;N = 9yN x [0, 1), and so
M'\O N~ MUE x [1,0) 2 M.

The problem of classifying all completions is a bit more subtle, since one has to be
very precise about what it means for two completions to be the same. The reader
is referred to Siebenmann’s original thesis [I4] for more details.

6 FIBERING OVER A CIRCLE

Let M be a (connected) manifold, and 6 € H*(M,Z) a cohomology class. Since S*
is a K(Z,1), we know 6 is represented by a homotopy class of maps f : M — St
The question we want to answer is

Problem 6.1. When is a map f : M — S' homotopy equivalent to a fiber product
projection?

There is a more geometric way to look at this. The Pontryagin-Thom construc-
tion tells us the datum of f is equivalent to a framed cobordism class of codimension
1 submanifolds of M. If f were a fiber product, then the corresponding submanifold
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is the fiber F' of any point in S'. Let M be the closed manifold with boundary
resulting from cutting M along F. Then Mp is a fiber bundle over [0, 1], which
must be trivial. Hence Mp = F x [0, 1]. Conversely, given a framed codimension 1
submanifold F of M, if Mr = F x [0,1], then M is naturally fibered over S! using
the projection map F' x [0,1] — [0, 1].

Thus, we can equivalently view this problem as: given a framed codimension 1
submanifold of M, can we do framed surgery on F' so that Mr becomes a product?
Given the s-cobordism theorem, this is equivalent to asking F' — Mp to be a
homotopy equivalence, and some obstruction vanishing.

Recall that in the end theorem, if 9V — V fails to be a homotopy equivalence,
our strategy was to find some disks representing a non-trivial homology classes, and
then throw it out of V. In this case, if F' — Mfp fails to be a homotopy equivalence,
the idea is to take out a cell on one end and put it back on the other, in hope of
making Mp looking more like a product.

Unsurprisingly, this does not always work. Observe that if f were homotopic
to a fiber bundle projection, then we know what the homotopy type of the fiber
would be. We can construct the pullback

X — M

b

R —— St

where the bottom map is the universal covering map. Since R is contractible, we
know X is the homotopy fiber of f : M — S, and hence has the homotopy type
of the actual fiber if f were a fiber bundle projection. Equivalently, the pullback
depends only on the homotopy class of f, and if f were a fiber bundle projection,
then X = F xR~ F.

In any case, we have a homotopy long exact sequence

0=mS' > mX > mM — 1St - 71X — moM = x

From this, we see that X is connected iff f, : w1 (M) — m(S?) is surjective. If it
were the zero map, then X would have infinitely many components, and we would
be very sad and give up. If not, the image is nZ for some n € Z. Then f lifts
along the n-fold covering map n : S' — S, and then the map to this cover would
be surjective on m;. Since n : St — S! itself is a fiber bundle projection, there
is no lost in generality if we only consider cases where X is connected, i.e. f, is
surjective. In this case,

mX =ker(f, : mM — 7 Sh).

Observe that X is in fact completely determined by m X as a subgroup of m M,
since it is the covering space corresponding to that subgroup.
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If we want X to have the homotopy type of the fiber, which has to be a compact
manifold, then we must require that X has the homotopy type of a finite CW
complex. The following (non-manifold) example illustrates an example where this
fails (the vertical map on the right collapses the left-hand side to a point, and acts
as the identity on the right)

000~

| |
— <

Thus, from now on, we assume X has the homotopy type of a finite CW complex.

In general, it is a better idea to work directly on X itself. To see this, pick a
smooth approximation of f; pick a regular value p; and set F' = f~ 1({p}). Let
F be a lift of F to X. Then F cuts X into two parts, say X, and X_. Then as
before, we can move handles from X, to X_ and vice versa, and it is very easy
to understand what this does to the homology of X, and X_. If we worked with
Mp directly, then the change in homology is less well-understood, since we add the
cells back on the other side.

At this point, there are two possible directions we can take:

1. We can proceed just as before, using the finiteness hypothesis to move handles
across F' and hope that we can get rid of all homology.

2. We apply Siebenmann’s end theorem to show that X is abstractly isomorphic
to F' X R for some F'. This comes with a natural projection map to R, but in
general is not the same as original projection X — R. We then try to relate
these two maps, and if we are successful, this would imply f: M — S!is
homotopic to a fiber bundle projection.

In each case, we are going to encounter some obstruction, depending on 7 X. After
encountering such obstruction, one has to show that it is a genuine obstruction, i.e.
it is a well-defined function of the map f. If we can do so, we consider the problem
solved.

These obstructions are slightly more subtle than the usual ones, since X
comes with the action of Z = mS! via deck transformations over M, which
gives our obstructions extra structures and properties. To avoid dealing with
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extra complications, we will focus on the case where m; X = 0, in which case the
obstruction groups all vanish. We will also assume M has no boundary, which
is more for notational convenience than technical convenience. We also assume
dim M > 6.

For more sophisticated versions, see [I], [3], [I5]. The approach in [I] is very
similar to ours, but they work with manifolds with boundary as well. In [3], they
attack the problem honestly for general m; along the lines of (1). In [I5], the same
problem is approached along the lines of (2).

The steps we perform are similar to the proof the Siebenmann’s theorem, but
they have to be modified appropriately to take care of the deck transformations.
Let T be the deck transformation corresponding to a generator of m;52. Recall
that we defined Mp to be the result of splicing M apart at F. Fix a lift of Mg to
X, and label the two ends of Mg as Fy and F}, so that TFy = F,. For r € Z, we
define

My =T M.
k<r
T \
F £
Mp

Mp
My,
M,

To modify F, recall that the homotopy class of the map f : M — S! is
determined by the framed cobordism class of F'. Since we are working in co-
dimension 1, framing is the same as orientation, and we generally don’t need to
worry much about this.

The basic construction is as follows: If we have an embedding ¢ : (S9!, D7) —
(Fo, Mp) that meets Fy transversely and avoids Fj, we can thicken the disk and
perform surgery as before to get a new submanifold G C Mp, or equivalently
G C M, with a natural framing extending that of Fy \ (S%°!). To be precise, if
we thicken to 1’ : (S971 x D" D4 x D" 9) — (Fy, Mp), then we set

G = (F\ /(87" x Dr=1)) Uy D7 x §D" 1,

‘sqfl xdDN—4

We claim that G is framed cobordant to F. To see this, we make a small
translation of F' away from G (using the framing), so that F' and G no longer
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intersect (especially for ¢ = 1, it is crucially that ¢ maps to Mg, not M). Then the
region “between” F' and G gives a cobordism between F' and G (both this region
and M x [0, 1] are oriented, so this cobordism is automatically framed).

We will use really ad hoc methods to fix up 7y and 71, and then higher homology
groups can be tackled in an honourable fashion.

Lemma 6.2. We can pick F so that F' and Mg are connected.

Proof. We modify F so that mo(Fy), mo(F1) — mo(Mp) are injective. If one of them
is not, say mo(Fo) — mo(Mp) is not, then there are two components of Fy that are
connected in Mp. So we can find a path on My that connects the two components,
which we may assume is an embedding since dim M > 6. We then perform surgery
along the path to reduce the number of components.

We keep doing this until the two maps are injective, which must eventually
happen since mo(Fy) = mo(F}) is finite and each step reduces the size by 1. This in
fact implies 7o(Fy) = mo(M) = *. Indeed, we have

7To(X) = lim 7T0(M;v>,

Since mo(X) = * and mo(ME) — mo( M) is injective, it must be the case that it
is also surjective and mo(Mp) = * for all r. Also, we know that mo(Mg) — mo(Mp)
is injective, and so 7y(Mp) must be a singleton as well. O

Lemma 6.3. We can pick F so that F' and Mg are simply connected.

Proof. Observe that if F'is simply connected, then since m X = 0 as well, Seifert—
van Kampen tells us

O:7T1X:"'*7T1MF*7T1MF*7T1MF*--~7

and so we must have m; Mz = 0. So we need to make m F = 0.

Suppose we have an element in 71 F. Then there is a disk in X that bounds
this loop, since X is simply connected. Project this down to M, and then perturb
it to become an embedding in M, and moreover so that it is transverse to F'. If
the intersection is trivial, then we can simply excise the loop. In general, though,
the intersection of F with the disk D? is a finite number of copies of S*.

What we do is to look an innermost copy of S! in the intersection, which is
then bound by a smaller disk in M that doesn’t have other intersections with F'.
We can then excise this disk. By excising a small enough thickening of the disk, we
have not touched any of the other intersections, and 7 F' can only have become
smaller (though it might not). Moreover, a small perturbation of the original disk
embedding will give a disk embedding that still kills the loop we started with, and
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has one less intersection with F'. We keep doing this until we excise the original
element.

Since 7 F' is finitely generated, we are done after doing this finitely many
times. [

The arguments we used so far clearly do not generalize, especially since we
made good use of the fact that 7o X and 7 X are trivial. For higher dimensions,
we turn to the convenient tool of homology and excision to simplify our problem
as follows:

Lemma 6.4. If F, Mp are simply connected and Hy,(X, M%) = 0 for all k, then
Hy(Mp, Fy) = 0 for all k. Thus, by the h-cobordism theorem, Mp = Fy x [0,1],
and so M is fibered over S* with fiber F.

By excision, we have Hy(X, My) = H(X \ M%, Fy), which may be a better
way to think about the condition.

Proof. We have the long exact sequence
s — Hy (X, M) — Hy (M My — Hy_q (X, Mp) — -+ .
By excision, we have Hy,(Mjt!, M%) = Hy(Mp, Fy). So we are done. O
Thus, it suffices to prove
Lemma 6.5. We can pick F' such that H,(X, M%) =0 for all k.

Proof. We do this inductively on k. The base case k = 1 is done. We claim that
it suffices to modify F so that the map i, : Hy(Mt, My) — Hyp(X, M%) is zero.
Indeed, if this is the case, then the long exact sequence

s — Hy (M M) — Hy(X, My) — Hp(X, M) — -

tells us Hy(X, ML) — Hp(X, My is injective. But the direct limit of this
sequence as r — oo is Hy(X, X) = 0. So we must have had Hy(X, M}) =0 in the
first place.

To achieve the above, suppose [c] in Hy (M5, M}.) is such that i.[c] # 0. Then
following the steps in Theorem we can modify F' to G such that

Hk(Xa M&) = Hk(Xv MIG)/Z*[C]

We repeat until i, is zero. This must eventually stop, since Hy(X, M}) is a finitely
generated abelian group (this requires a bit of justification, since we only know
that X is finite, but we simply need to apply Mayer—Vietoris). Then we are done.
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Again as in Theorem [5.17, we do this carelessly up until £k = n — 3, and do it
carefully for k = n — 2. The care needed is exactly the same as in the end theorem,
and we shall not repeat the argument (it is actually simpler here, since we are
simply connected and can use the Smith normal form theorem to perform the
final column operations, instead of introducing new handles, but either strategy
works). O

Concluding what we have so far, we can say

Theorem 6.6. Let dim M > 6 with miM = Z. If f : M — S' induces an
isomorphism on m and the homotopy fiber of f is a finite CW complex, then f is
homotopic to a fiber bundle projection. ]

Remark 6.7. Reading the proofs, one might be under the impression that we
have unnecessarily complicated it by going back and forth between X and Mp, and
we might be able to simplify the proof by not mentioning X at all. However, we
cannot, because the hypothesis that X is finite is crucial, and we must mention X
if we want to use it!
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