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Let V be a symmetric monoidal stable ∞-category, satisfying appropriate adjec-
tives. (Reduced) factorization homology is then a functor∫

(−)

(−) : ZMfldn ×Algaug
n (V)→ V.

The way we have viewed this so far is to fix an A ∈ Algaug
n (V) and consider this a

functor
∫

(−)
A : ZMfldn → V. We can then prove theorems such as ⊗-excision. As

far as categories go, ZMfldn is not the best category to apply category-theoretic
techniques to. In this talk, we will fix an M∗ ∈ ZMfldn and consider the functor∫

M∗

(−) : Algaug
n (V)→ V.

The only explicit calculation we know about this functor is its values on free
algebras, which we did in the case of (non-zero-pointed framed) manifolds in the
first talk. We shall begin by setting up the analogous version for augmented n-disk
algebras and zero-pointed manifolds.

1 Free algebras

If A ∈ Algaug
n (V), then it has an underlying object in 1/V/1, i.e. an object in V that

comes with a map to and from the unit 1 (whose composite is the identity). Since V
is assumed to be stable, this gives us a splitting

A = 1⊕ V.
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The module V has a canonical action of Emb(Rn,Rn), which deformation retracts
to O(n) (by scaling then Gram–Schmidt). So the “underlying module” V has a
canonical O(n) action, and this defines a forgetful functor

U : Algaug
n (V)→ ModO(n)(V)

I ⊕ V 7→ V

The free functor Faug is defined to be the left adjoint of U . In the first talk, we
observed

Theorem 1. ∫
M∗

Faug(V ) =
⊕
i≥0

Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i,

where Conf fr
i (M∗) is the configuration space of i points together with a framing of

the tangent bundle at each point.

All the proofs in the talk will be based on this computation, and so it would be
nice to have a functor L : Algaug

n (V)→ ModO(n)(V) that sends Faug(V ) to V , which
we can think of as the indecomposables functor. Moreover, we can write an arbitrary
augmented n-disk algebra as a sifted colimit of free algebras, and so it would be nice
if this functor preserves colimits as well.

We will construct L as a left adjoint by identifying its right adjoint. The right
adjoint should be a functor ModO(n)(V)→ Algaug

n (V) whose composition with U is
the identity. We can pick this to be the square zero extension functor t, which one
can check satisfies the hypothesis of the adjoint functor theorem, so it admits a left
adjoint

L : Algaug
n (V)→ ModO(n)(V).

This functor L (and t) actually play a special categorical role:

Theorem 2. The adjunction

Algaug
n (V) ModO(n)(V)

L

t

exhibits ModO(n)(V) as the stabilization of Algaug
n (V).

This will be very important when we get to the Goodwillie calculus part of the
story.

2 The Goodwillie filtration

Most of the material here about Goodwillie calculus are due to Goodwillie, and a
“modern” account can be found in Chapter 6 of Higher Algebra. We will provide
references to Higher Algebra when we omit proofs of theorems.
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Goodwillie calculus is a method of approximating functors F : C → V by a
sequence of “polynomial” functors. For the theory to work out, we have to make the
following assumptions:

• C and D are pointed.

• C has finite colimits.

• D has finite limits and sequential colimits which commute past each other.

The first hypothesis is not necessary, but our examples are all of this form. Moreover,
the theorems we seek are usually first proven for the pointed case and then transferred
to unpointed case, so we might as well focus on the pointed case only.

Before we go into the definition of a “polynomial functor”, we give the special
case of a linear functor. We should think of linear functors as functors like homology,
which satisfy Mayer–Vietoris.

Example 3. A linear functor is a functor that sends pushout squares to pullback
squares.

Example 4. If D is stable, then pushouts are the same as pullbacks. So any colimit
preserving functor is in particular linear.

A k-excisive functor, which should be thought of as a polynomial functor of
degree ≤ k, satisfies a higher-dimensional analogue of this axiom involving higher-
dimensional cubes.

Definition 5. Let S be a finite set with |S| = k. A k-cube in C is a functor P(S)→ C,
where P(S) is the power set of S, considered as a poset category.

Example 6. P({0, 1}) and P({0, 1, 2}) can be depicted as follows

∅ {0}

{1} {0, 1}

,

∅ {0}

{2} {0, 2}

{1} {0, 1}

{1, 2} {1, 2, 3}

Definition 7. A k-cube is (co)Cartesian if it is a (co)limit diagram.
It is strongly coCaretsian if it is the left Kan extension of the restriction to

P≤1(S), the sub-poset of subsets of S of cardinality at most 1 (strongly Cartesian is
defined similarly).
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Definition 8. A functor is k-excisive if it sends strongly coCartesian (k + 1)-cubes
to Cartesian (k + 1)-cubes.

It is not too hard to see that

Lemma 9 ([HA 6.1.1.14]). If k′ ≥ k, then every k-excisive functor is also k′-excisive.

Theorem 10 (Goodwillie). For each k, there is a universal approximation PkF that
is polynomial of degree ≤ k and a natural transformation F → PkF universal amongst
natural transformations to polynomial functors of degree ≤ k. These assemble to give
a “Taylor tower”

...

P2F

P1F

F P0F

We will prove this theorem in the next section. Note that the theorem does not
claim whether the tower actually converges to F or not. This is an issue that has to
be addressed separately.

The goal of this talk is to understand the polynomial approximations Pk
∫
M∗

(−).

Example 11. A 1-cube is just a morphism. It is always strongly coCartesian and is
Cartesian iff it is an equivalence. So 0-excisive functors are constant functors, and
P0F (X) = F (∗).

Example 12. A 2-cube is a square, and being 1-excisive means sending pushouts
to pullbacks, as promised.

We will prove the theorem by providing an explicit model for PkF . We can give
an indication of what this explicit model looks like in the case where F is reduced,
i.e. F (∗) = ∗.

Example 13. If F is reduced, then

P1F (X) = colim
n→∞

ΩnF (ΣnX).

The fiber of the map PkF → Pk−1F is called the kth derivative of F (at ∗). It is
k-homogeneous:

Definition 14. A functor F is k-homogeneous if F = PkF and Pk−1F = ∗.
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In general, the polynomial approximations PkF are rather difficult to understand,
but often times, the derivatives admit rather explicit descriptions. This is the case,
for example, when F is the identity map from the category of spaces to itself. Our
actual goal is to understand the derivatives of the functor

∫
M∗

(−) : Algaug
n (V)→ V

for a fixed M∗.
While polynomial functors of degree k can be pretty complicated, k-homogeneous

functors are not.

Theorem 15 ([HA 6.1.4.14, HA 6.1.2.9]). An k-homogeneous functor F : C → D is
uniquely of the form

F (X) = G(Σ∞X, · · · ,Σ∞X)Σk
,

where Σ∞ : C → Sp(C) is the stabilization functor and G : Sp(C)k → D is symmetric
in the k variables and 1-homogeneous in each variable.

Conversely, every functor of this form is k-homogeneous.

This is an actual, non-trivial theorem to prove, and is a crucial ingredient in our
identification of the derivatives. We will, however, not prove it.

Example 16. F is reduced iff P0F is trivial. So if F is reduced, then P1F is also
the first derivative. Our explicit formula above shows that it is indeed of the form
we claimed.

In the case of interest, the map Σ∞ : Algaug
n (V)→ Sp(Algaug

n (V)) is exactly the
functor L we had previously. So the kth derivative of

∫
M∗

(−) is determined by its
values on free algebras. The main theorem we want to prove is

Theorem 17. The kth derivative of
∫
M∗

(−) is

A 7→ Conf fr
k (M∗)

⊗
ΣkoO(n)

L(A)⊗k.

Note that by the theorem above, this functor is indeed k-homogeneous, with

G(X1, . . . , Xk) = Conf fr
k (M∗)

⊗
O(n)k

(X1 ⊗ · · · ⊗Xk),

which is cocontinuous and in particular linear in each variable. We will prove this
theorem by explicitly calculating the polynomial approximations evaluated on free
algebras:

Example 18. In the case where A = Faug(V ), we have

Pk

∫
M∗

Faug(V ) =
⊕

0≤i≤k

Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i.
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3 Basics of Goodwillie calculus

The calculation of the derivative will use the explicit description of PkF in the proof
of its existence, which is the focus of this section.

We keep the assumptions of the previous section. To construct the universal
approximation of F by a k-excisive functor, we force F to send certain strongly
coCartesian diagrams to Cartesian diagrams, and it will turn out that this is enough.

More specifically, we find some strongly coCarteisan diagrams X : P(S) → C,
where |S| = k + 1 and X (∅) = X. We then replace F (X) by lim∅6=T⊆S F (X (T ))
(which would equal F (X) if F were k-excisive). We repeat this procedure and hope
we eventually end up with something k-excisive.

To define such an X , we need to specify X|P=1(S), since we know X (∅) = X and
everything is the left Kan extension of this. Since X is the only thing we know, the
only thing we can do is to set X ({s}) = ∗ (placing X there does no good).

We define C(−)(X) : P(S) → C to be the unique strongly coCartesian diagram
such that C∅(X) = X and C{s} = ∗. Concretely, CT (X) is the colimit of the diagram

X

∗ ∗ · · · ∗ ∗

where the vertices are indexed by T .
We define

TkF (X) = lim
∅6=T⊆S

F (CT (X)).

There is then a natural transformation tF : F → TkF .

Theorem 19. If F : C → D is any functor, define PkF : C → D as the sequential
colimit

F TkF TkTkF · · ·tF tTkF

Then PkF is k-excisive and the natural map θF : F → PkF is the universal natural
transformation to such a functor.

Proof. We first figure out what we have to prove. Of course, we have to prove that
PkF is k-excisive. It turns out this is the only non-trivial thing to prove.

In the 1-categorical case, to prove the universal property, we first need to know
that θF is an equivalence if F is already k-excisive, which is clear in our case. This
means if we have a map α : F → G where G is k-excisive, then we have a diagram

F G

PkF PkG

α

θF θG

Pkα
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Since θG is an equivalence, Pkα lifts to a map to G that makes the diagram commute.
To show that the extension to PkF is unique, suppose we have two extensions

α̃, α̃′

F G

PkF

α

θF

Applying Pk to the whole diagram, we know that Pk(α̃) ◦Pk(θF ) = Pk(α̃′) ◦Pk(θF ).
If Pk(θF ) were an equivalence, then this implies Pk(α̃) = Pk(α̃′). Since Pk essentially
acts as the identity on PkF and G, this implies α̃ = α̃′.

In the ∞-categorical case, HTT 5.2.7.4 implies these two conditions are also
sufficient.

As we said, the first condition is immediate from construction, and to prove that
Pk(θF ) is an equivalence, it suffices to show that Pk(tF : F → TkF ) is an equivalence.
But this is clear, since we are just shifting the sequential colimit.

So all we have to do is to show that PkF is in fact k-excisive.

Claim. Let X : P(S)→ C be a strongly coCartesian k-cube. Then the canonical map
θF : F (X )→ (TkF )(X ) factors through a Cartesian k-cube in D.

If this were true, then PkF (X ) would be the sequential colimit of Cartesian cubes,
hence Cartesian (since we assumed finite limits commute with sequential colimits).

The Cartesian k-cube Y : P(S)→ D we seek admits a very simple description.
Indeed, we simply take F (X ) and replace the ∅ vertex with the pullback of the rest of
the diagram. This is then by construction a Cartesian cube, and there is a canonical
map F (X )→ Y by the universal property.

To show that θF factors through this map, we need to use a funny description of
Y , and this description uses the fact that X is strongly coCartesian.

Fix a T ⊆ S. We define XT : P(S) → C by setting XT (I) to be the pushout of
the diagram

X (I)

X (I ∪ {s1}) X (I ∪ {s2}) · · · X (I ∪ {sk−1}) X (I ∪ {sk})

where T = {s1, . . . , sk}.
We make the following observations:

• X∅(I) = X (I).

• If X is strongly coCartesian, then essentially by definition, XT (I) = X (I ∪ T ).

• If we replace the bottom vertices with ∗, then this gives CT (X (I)). So there is
a canonical map XT (I)→ CT (X (I)).
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The last fact gives us a map

F (XU (T ))→ F (CU (X (T )))

natural in U and T . These assemble to give maps

F (X (I)) ∼= F (X∅(I))→ lim
∅6=T⊆S

F (XT (I))→ lim
∅6=T⊆S

F (CT (X (I))) ∼= TkF (X )(I)

It remains to show that the middle object is equal to Y . But it is not difficult to use
the second fact to see that

lim
∅6=T⊆S

F (XT (I)) =

{
lim∅6=T⊆S F (X (T )) I = ∅
F (X (I)) I 6= ∅

.

4 The proofs

4.1 Derivatives

We now embark on the journey to prove the theorems we stated at the beginning. We
shall begin by explicitly calculating Pk

∫
M∗

Faug(V ). Note that since the construction
of PnF was done pointwise, we can do this calculation without knowing what the
whole functor Pk

∫
M∗

(−) is.

First note that both V and Algaug
n (V) have a zero object, and Faug sends to zero

object to the zero object by virtue of being a left adjoint. So

CT (Faug(V )) = Faug(CT (V )).

Using this and fixing a (k + 1)-cube S, we can compute Tk
∫
M∗

(−):

Tk

∫
M∗

Faug(V ) = lim
∅6=T⊆S

∫
M∗

CT (Faug(V ))

= lim
∅6=T⊆S

∫
M∗

Faug(CT (V ))

= lim
∅6=T⊆S

⊕
0≤i<∞

Conf fr
i (M∗)

⊗
ΣioO(n)

CT (V )⊗i

=
⊕

0≤i<∞

lim
∅6=T⊆S

Conf fr
i (M∗)

⊗
ΣioO(n)

CT (V )⊗i.

Fixing M∗, let us write

Ri(V ) = Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i.
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We have then shown that

Tk

∫
M∗

Faug(V ) =
⊕

0≤i<∞

(Tk(Ri))(V ).

Similarly, we have

T jk

∫
M∗

Faug(V ) =
⊕

0≤i<∞

(T jk (Ri))(V ).

Therefore, we conclude that

Pk

∫
M∗

Faug(V ) =
⊕

0≤i<∞

(Pk(Ri))(V ).

But we have already concluded that Ri is i-homogeneous (as a functor of V ), so
Pk(Ri) is just Ri if i ≤ k, and 0 otherwise. So

Pk

∫
M∗

Faug(V ) =
⊕

0≤i<k

Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i.

In particular, the kth derivative evaluated on Faug(V ) is exactly

Conf fr
k (M∗)

⊗
ΣkoO(n)

V ⊗k.

But since the kth derivative evaluated at an augmented n-disk algebra A only depends
on L(A), and L(A) = L(Faug(L(A))), we know

Theorem 20. The kth derivative of
∫
M∗

(−) is

A 7→ Conf fr
k (M∗)

⊗
ΣkoO(n)

L(A)⊗k.

In other words, we always have a cofiber sequence

Conf fr
k (M∗)

⊗
ΣkoO(n)

L(A)⊗k → Pk

∫
M∗

A→ Pk−1

∫
M∗

A.

4.2 Convergence

We next want to study the problem of convergence. For A = Faug(V ) we can do this
pretty explicitly using the description above, and for non-free algebras, our strategy
is to write them as sifted colimits of free algebras.
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Lemma 21. Every element of Algaug
n (V) is a sifted colimit of free augmented n-disk

algebras.

Proof. The forgetful functor Algaug
n (V)→ 1/V/1 is monadic, and so every augmented

n-disk algebra A is the geometric realization of the bar construction (Faug)•+1A.

Lemma 22.
∫
M∗

(−) and Pk
∫
M∗

(−) preserves sifted colimits.

Proof. Recall that an augmented n-disk algebra is a symmetric monoidal functor
Diskn,+ → V. Suppose A : J → Algaug

n (V) is a sifted diagram of augmented n-disk
algebras. Then

colim
j∈J

∫
M∗

Aj = colim
j∈J

colim
U+↪→M∗

Aj(U+) = colim
U+↪→M∗

colim
j∈J

Aj(U+).

So to show that
∫
M∗

commutes with sifted colimits, we have to show that

colim
j∈J

Aj(U+) ∼=
(

colim
j∈J

Aj

)
(U+).

Since Aj is symmetric monoidal, it suffices to prove this for the case where U+ = Rn+.
That is, we have to show that the forgetful functor Algaug

n (V)→ V preserves sifted
colimits, which is a general fact about algebras over monads.

For the case of Pk
∫
M∗

(−), we observe that this is true for P0

∫
M∗

(−), which
is constant, and then proceed by induction using the explicit formula for the kth
derivative.

Finally, we consider the problem of convergence. In the case of a free algebra, we
are asking when the map⊕

0≤i<∞

Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i →
∏

0≤i<k

Conf fr
i (M∗)

⊗
ΣioO(n)

V ⊗i

is an equivalence. This is not always true. In the case where V is the category of
spectra, say, a sufficient condition for this to be true is that the connectivity of
Conf fr

i (M∗)
⊗

ΣioO(n) V
⊗i tends to infinity as i→∞. There are (at least) two ways

this can happen — either the connectivity of Conf fr
i (M∗) tends to infinity, or the

connectivity of V ⊗i tends to infinity.
In general, to make sense of this argument in an arbitrary stable ∞-category,

we need a t-structure, which is a collection of reflexive subcategories V≥t satisfying
certain properties, which we think of as the subcategory of t-connective objects. We
require this to be compatible with the tensor product, i.e. ⊗ maps V≥t × V≥s to
V≥t+s, and to be cocomplete, i.e.

⋂
t V≥t = {0}.

We can then state the following theorem:
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Theorem 23. The map ∫
M∗

A→ lim
k→∞

Pk

∫
M∗

A

is an equivalence if at least one of the following two hold:

1. The augmentation ideal ker(A→ 1) > 0.

2. ker(A→ 1) ≥ 0 and M∗ is connected and compact.

Proof. Under these assumptions, we will show that

ker

(∫
M∗

A→ Pk

∫
M∗

A

)
≥ k.

Then since taking kernels commutes with sequential limits, we know that

ker

(∫
M∗

A→ limPk

∫
M∗

A

)
≥ m for all m.

Since the t-structure is cocomplete, the kernel is trivial. So this map is an isomor-
phism.

Since kernels are the same as cokernels (up to a shift), taking kernels commutes
with taking shifted colimits. Moreover, if A satisfies the conditions of the theorem,
so does Faug(A). So it suffices to prove it for the free case.

In the case where A = Faug(V ), the conditions ker(A → 1) > 0 and ≥ 0
correspond to V > 0 and V ≥ 0.

We then use the fact that if V ≥ `, then V ⊗i ≥ i`; and if M∗ is compact and
connected, then Confi(M∗) is i-connected.
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