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1 Definition of the Ed operad

Definition 1.1. Ed(n) is the space of all n disjoint balls in Dd. This is an operad
in the usual way.

As a homotopy type, we have Ed(n) ' Confn(Dd) ∼= Confn(Rd), with the first
homotopy equivalence given by shrinking the balls. Recall that

Definition 1.2. For any topological space X, the configuration space Confn(X) ⊆
Xn is the space of n distinct points in X, labelled x1, . . . , xn.

The homology of Confn(Rd) as a group turns out to be pretty easy to compute.

Example 1.3. For n = 2, it is easy to see that Conf2(Rd) ' Sd−1. Indeed, by
translation, we can assume x1 = 0, and x2 can be any point in Rd \ {0} ' Sd−1.

A more symmetric way of seeing this is to consider the subspace of Conf2(Rd)
consisting of points such that x1 = −x2 and ‖x1‖ = ‖x2‖ = 1. This is homeomorphic
to Sd−1 and is a deformation retract of Conf2(Rd) by translation and scaling.

We focus on the case d > 2, so that Sd−1 is simply connected. We have fiber
sequences ∨

n−1 S
d−1 Confn(Rd)

Confn−1(Rd)
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The vertical map forgets the nth point and is a fibration. The fiber over a point is
Rd \ {x1, . . . , xn−1} '

∨
n−1 S

d−1. Inductively, by the Serre spectral sequence, we

see that the (co)homology of Confn(Rd) is free, concentrated in degrees that are
multiples of d − 1, and the Serre spectral sequence degenerates at E2 for degree
reasons.

This tells us the homology and cohomology groups completely as groups, but we
lack geometric understanding of all these classes, which is needed to compute the
operad structure. What we shall do is to produce explicit (co)homology classes, and
this preliminary calculation will tell us when we have found all the classes. For this
purpose, all we need are the following two properties:

1. Hd−1(Confn(Rd)) and hence Hd−1(Confn(Rd)) is free of rank
(
n
2

)
.

2. The cohomology of Confn(Rd) is generated as a ring by elements in degree
d− 1.

In fact, what we will do is to compute the cooperad structure on the cohomology,
which we only have to verify in degree d − 1, and then dualize to get the operad
structure on homology.

2 Homology

We produce some homology classes associated to trees.

Definition 2.1. Let S ⊆ {1, . . . , n} = n. An S-tree is a binary tree with a root
vertex and leaves labelled by elements of S (each label is used exactly once). We
also distinguish between the left and right branches of the binary tree.

By convention, the term “vertex” does not refer to the leaves. Thus, the number
of vertices is the number of leaves −1. We write |T | for the number of vertices of T .

Example 2.2. The following is are trees with 1 and 3 vertices respectively:

i j

`

i
j
k

Fix 0 < ε < 1
3 . Given an S-tree T , define a map PT : (Sd−1)×|T | → Confn(Rd)

as follows. If i ∈ n \ S, put xi at some fixed point “at infinity”. For the rest, we
define this by example.

If T is
i j

, we send v ∈ Sd−1 to the configuration
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0

εv

xi

xj

We abbreviate this as Pij .

If T is
k

i
j

we send (v1,v2) to

0

εv1

xi

ε2v2 xjxk

The fundamental class of (Sd−1)×|T | gives us a corresponding homology class in
Confn(Rd), which we still call PT .

Theorem 2.3. The classes in H∗(Confn(Rd)) satisfy the relations

T1T2

R

= (−1)d+|T1||T2|(d−1)
T2T1

R

T1T2T3

R

+

T2T3T1

R

+

T3T1T2

R

= 0

for any (sub)trees T1, T2, T3, R

The second identity is, of course, the Jacobi identity.

Proof. The first identity comes from changing the orientations of (Sd−1)×|T |.
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To simplify notation, we only prove the second identity in the case where
T1, T2, T3, R are trivial and n = 3, i.e. we show that

1 2 3 + 2 3 1 + 3 1 2 = 0

The general case admits the exact same proof.
Consider the submanifold of Conf3(Rd) consisting of points satisfying:

1.
∑
xi = 0

2. The perimeter of the triangle spanned by x1, x2, x3 is 4ε+ 2ε2.

3. The sides of the triangle have length at least 2ε2.

One observes that this manifold has three boundary components, achieved when one
of the sides have length exactly 2ε2. One then sees that this component is homotopic
to PT for some T in the identity. For example, the component where the x1–x2 side
has length 2ε2 is homotopic to the first term.

Definition 2.4. An n-forest is a collection of S-trees where each element in n is
used exactly once.

If F =
⋃
Ti is an F -tree, we define PF : (Sd−1)×|F | → Confn(Rd) in the same

way as PT , where the position of xk is specified by the tree that contains k, and the
ith tree is translated by (i, 0, 0, . . . , 0).

Definition 2.5. Let Poisd(n) be the abelian group generated by n-forest subject to
the (anti)commutativity and the Jacobi identity.

There is then a map Poisd(n) → H∗(Confn(Rd)), which we will show to be an
isomorphism.

3 Cohomology

We now produce some cohomology classes of H∗(Confn(Rd)) in degree d− 1, which
will generate the whole cohomology.

Definition 3.1. For i, j ∈ {1, . . . , n}, let αij : Confn(Rd) → Conf2(Rd) ' Sd−1

send (x1, . . . , xn) to (xi, xj). Let aij ∈ Hd−1(Confn(Rd)) be the pullback of the
fundamental class along αij .

Note that aij = (−1)daji, and a2ij = 0, since the square of the fundamental class

on Sd−1 vanishes.
The first claim is that these aij are dual to the Pij .
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Lemma 3.2. Under the homology-cohomology pairing, if i < j and k < `, then

〈aij , Pk`〉 = δikδj`.

In particular, the set {aij : i < j} is linearly independent and forms a basis of
Hd−1(Confn(Rd)), since we know this group is free of rank

(
n
2

)
.

Proof. Consider the composite

Sd−1 → Confn(Rd)→ Sd−1.

where the first map picks out Pij and the second αij . The pairing above is given by
the degree of this map.

If i = k and j = `, then this is the identity map, which has degree 1. Otherwise,
taking ε→ 0 gives a homotopy to the constant map.

We now know that as a ring, the cohomology of Confn(Rd) is generated by the
aij . We introduce a graphical way to depict products of the aij . Such a product is
represented by a graph with vertices {1, . . . , n}. Each edge is oriented, and the set
of edges is ordered. Multiple edges between vertices is allowed but loops are not.

To depict aij , we take the graph whose only edge is an edge from i to j. Products
are then represented by unions. For example, a42a43a13 is represented by the graph

1 2

3 4

1

2

3

The numbers on the edges denote the ordering of the edges.
If we swap the ordering of two adjacent edges or reverse an arrow, the class

represented picks up a sign of (−1)d−1. Moreover, since a2ij = 0, any graph with a
repeated edge represents 0.

There is one further relation, which morally is dual to the Jacobi identity.

Lemma 3.3 (Arnold).

i k

j
1 2 +

i k

j
1

2

+
i k

j

1

2 = 0.

Proof. Without loss of generality, we assume n = 3 and (i, j, k) = (1, 2, 3). We have
to show that

a12a23 + a23a31 + a31a12 = 0.

We will prove this using the intersection product.
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Recall that if Mn is a compact manifold, then Poincaré duality tells us

Hk(Mn) ∼= Hn−k(Mn).

Under this isomorphism, the cup product on H∗(Mn) induces a product on H∗(M
n).

If x, y ∈ H∗(Mn) are represented by submanifolds X,Y that intersect transversely,
then x · y is represented by X ∩ Y . This allows for a geometric way to compute the
cup product structure of a compact manifold.

In the case of a non-compact manifold, there are two ways to fix Poincaré duality.
One is to replace cohomology with compactly supported cohomology, but this is not
what we want. Instead, we can replace homology with “locally finite homology”, also
known as Borel–Moore homology, which is given by the homology of the complex of
locally finite chains. In particular, arbitrary closed submanifolds of Mn represent a
Borel—More homology class.

Let coli be the submanifold of Conf3(Rd) where x1, x2, x3 are colinear and xi
is in the middle. This is a submanifold of codimension d − 1, and represents a
class in Hd−1(Conf3(Rd)). We claim that up to a sign, it is aij − aik (where
{j, k} = {1, 2, 3} \ {i}).

To compute the relevant class, we evaluate it on Pij , Pjk and Pik, which is
computed by intersecting the relevant submanifolds. It does not intersect Pjk,
because in Pjk, the point i is at “infinity”, so cannot be in between j and k.

On the other hand, in Pij and Pjk, there is exact one point where i, j, k are
colinear and i is in the middle, and these points come with opposite signs.

Now col1 and col2 are disjoint, so the represented cohomology classes have zero
product. So

0 = (a12 − a13)(a23 − a21) = a12a23 + a23a31 + a31a12.

Definition 3.4. We let Siopd(n) be the abelian group generated by graphs on n
subject to the previous relations. This is a ring by taking unions.

There is then a map Siopd(n)→ H∗(Confn(Rd)), which we will show to be an
isomorphism.

4 The homology–cohomology pairing

To compute the homology–cohomology pairing, since H∗(Confn(Rd)) is generated
by the aij , it suffices to compute the composites∏

v∈F
Sd−1

PF−→ Confn(Rd)
αij−→ Sd−1

for forests F .
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If i and j are in different trees, by taking the limit ε→ 0, we see that this map is
homotopic to the constant map (±1, 0, . . . , 0), hence is nullhomotopic. Otherwise, if
they meet at v, then it is easy to see that up to a sign, this is projection onto the
vth factor.

Lemma 4.1. Let F be an n-forest and G an n-graph. Then under the homology–
cohomology pairing, 〈G,PF 〉 is ±1 iff

1. For every edge (i, j) in G, the corresponding leaves in F are in the same
component

2. The map sending an edge (i, j) to the meet of leaves {i, j} gives a bijection
between edges of G and vertices of F .

Otherwise, it is zero.

This pairing of forests and graphs is called the configuration pairing.

Proof. The pairing is the degree of the map

∏
v∈F

Sd−1
PF−→ Confn(Rd)

∏
ij∈G

αij

−→
∏
ij∈G

Sd−1.

The lemma is then clear from the previous identification.

Using this explicit description of the pairing, let us show that the maps Poisd(n)→
H∗(Confn(Rd)) and Siopd(n)→ H∗(Confn(Rd)) are isomorphisms. We already know
that the second map is surjective. Our plan is as follows:

1. Write down a spanning set of Poisd(n) and Siopd(n).

2. Show that the homology–cohomology pairing pairs these elements perfectly.

3. Deduce the maps must be injections and dim Poisd(n) = dim Siopd(n), so they
are both isomorphisms.

The following lemma follows from applying the Jacobi and Arnold identities:

Lemma 4.2. Poisd(n) is spanned by “tall” forests, i.e. forests whose trees look like

· · ·

where the leftmost vertex has minimal label amongst the leaves. Siopd(n) is spanned
by “long graphs” whose components look like
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i1

i2

i3

i4

i5

where i1 < i2, . . . , i5.

Hint. The first follows form the observation that tall trees are exactly trees where
the leftmost vertex is as far away from the root vertex as possible.

Each of these elements are specified by partitions of n together with some ordering
data.

Lemma 4.3. The pairing of a tall forest and a long graph is 1 if they correspond to
the same partition, and 0 otherwise.

Corollary 4.4. Poisd(n) → H∗(Confn(Rd)) and Siopd(n) → H∗(Confn(Rd)) are
isomorphisms.

5 Operad and cooperad structures

We now describe an operad structure on Poisd and the corresponding dual cooperad
structure on Siopd.

Given an S-tree, we can produce a bracket expression. For example, we send

i j k 7→ {{xi, xj}, xk}.

We can then send forests to products of bracket expressions, e.g.

i j k
` m 7→ {{xi, xj}, xk} · {x`, xm}.

The Jacobi identity translates to the usual Jacobi identity of the Lie/Poisson bracket.
With the bracket expressions, we can interpret Poisd as operad in the usual way by
imposing the Leibniz rule

{X,Y · Z} = {X,Y } · Z + (−1)|X||Y |Y · {X,Z}

Under the configuration pairing, one checks that this gives the following cooperad
structure on Siopd. To give an operad structure is to give a map ◦a : O(m)⊗O(n)→
O(m+ n− 1) for every tree of the form

1 m+n−1

a a+ n

A

B
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where the grafting vertex is the ath vertex. Label the two vertices A and B. To
make Siopd a cooperad, we need a map Siopd(m + n − 1) → Siopd(m) ⊗ Siopd(n).
This map sends G to GA ⊗GB , where the edges of G1 and G2 are specified by the
following procedure:

• For any edge ij of G, consider the leaves i and j in the tree above. Let v be
the meet of i and j (so that v = A or B), and let Jv(i) = Jv(j) be the branches
of v over which i and j lie (in this case, one of Jv(i) and Jv(j) will be i or j).
Then add an edge to Gv from Jv(i) to Jv(j).

Theorem 5.1. The map Siopd(n) → H∗(Confn(Rd)) = H∗(Ed(n)) is an isomor-
phism of cooperads.

Corollary 5.2. The map Poisd(n) → H∗(Confn(Rd)) = H∗(Ed(n)) is an isomor-
phism of operads.

Proof. Since the cooperad structure is compatible with the product structure, it
suffices to show that it preserves ◦a on aij .

Consider the composite

Ed(m)× Ed(n)
◦a−→ Ed(m+ n− 1)

αij−→ Sd−1.

Consider the homotopy where at time t, the disks in the first factor are scaled by
t and the disks in the second factor are scaled by t2. As t → 0, we see that this
approaches the projection onto the vth factor followed by αJv(i)Jv(j), as promised.
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