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Conventions

• The term “ring spectrum” refers to homotopy ring spectrum.

• If X is a based space, we will denote Σ∞X by X again. Thus, E∗(X) is always
reduced homology.

• If X is an unbased space, we will denote Σ∞+ X by X+. Thus, E∗(X+) is
unreduced homology.

1 Thom spaces

Recall from your Algebraic Topology education that if ξ : V → X is an oriented
vector bundle of rank d, then we have isomorphisms

H∗(X+) ∼= H∗+d(V, V \X),

H∗(X+) ∼= H∗+d(V, V \X).

called the Thom isomorphism. Later, as we grew up, we learnt that relative homology
is just the homology of the cofiber in disguise. As such, we define

Definition 1.1. Let ξ : V → X be a vector bundle. The Thom space of ξ, written
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Th′(ξ), is the homotopy pushout∗

V \X V

∗ Th′(ξ)

.

This makes Th′(ξ) a based space.
More concretely, pick a metric on ξ arbitrarily. We can then define the sphere

and disk bundles
S(V ) = {v ∈ V : ‖v‖ = 1},
D(V ) = {v ∈ V : ‖v‖ ≤ 1}.

Then
Th′(ξ) = D(V )/S(V ).

Example 1.2. If ξ is trivial of rank d, then Th′(ξ) = ΣdX+.

Thus, we should think of the Thom space as a twisted suspension of X, where
the twisting is specified by a vector bundle.

The construction of Thom spaces has two important properties, both of which
are straightforward to verify:

1. It is functorial along pullbacks — if f : X → Y is a map and ξ : V → Y is a
vector bundle, then there is a natural map

Th(f) : Th(f∗ξ)→ Th(ξ).

2. It is monoidal — if ξ : V → X and ζ : W → Y are vector bundles and
ξ � ζ : V �X → X × Y is the external direct sum. Then

Th′(ξ � ζ) ∼= Th′(ξ) ∧ Th′(ζ).

Corollary 1.3. Th′(ξ ⊕ R) = ΣTh′(ξ).

Proof. ξ ⊕ R = ξ � (triv : R→ ∗) and Th′(triv) = S1.

This leads to the following natural definition:

Definition 1.4. If ξ : V → X is a rank d vector bundle, then the Thom spectrum
of ξ is

Th(ξ) = Σ−dΣ∞Th′(ξ).

∗ We shall later introduce the Thom spectrum which will be written Th(ξ)
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This definition is designed so that Th(ξ ⊕ R) = Th(ξ), and hence the Thom
spectrum can be defined for virtual vector bundles as well. While we’ll mostly state
things for vector bundles, everything we say applies equally to virtual vector bundles.
The monoidality property still holds for the Thom spectrum:

Th(ξ � ζ) ∼= Th(ξ) ∧ Th(ζ).

With the Thom spectrum, we can rephrase the Thom isomorphism as saying

Theorem 1.5 (Thom). If ξ : V → X is an oriented vector bundle, then we have a
natural isomorphism of HZ-modules

HZ ∧ Th(ξ) ' HZ ∧X+.

If we think of Thom spectra as twisted suspensions, this says tensoring with HZ
untwists it.

The classical statement of the Thom isomorphism theorem is a bit more specific.
It says the isomorphism is given by capping or cupping with a Thom class u ∈
H∗(Th(ξ)). Usually, the cup product is induced by pulling back along the diagonal.
However, the cup product we want here takes the form

^: H∗(Th(ξ))⊗H∗(X)→ H∗(Th(ξ)).

so that u ^ · gives an isomorphism. This cup product is given by the Thom diagonal.

Definition 1.6. Let ξ : V → X be a vector bundle. The Thom diagonal is a map

∆ : Th(ξ)→ Th(ξ) ∧X+

obtained by applying Th to the map of vector bundles

ξ ξ � 0

X X ×X∆

To see that the pullback of ξ � 0 along ∆ is indeed ξ, note that by definition, ξ � 0
is the pullback of ξ along the projection onto the first factor.

Equivalently, if we view Th′(ξ) as D(V )/S(V ), the space version of the map
sends v to (v, π(v)) where π : D(V )→ X is the projection.

The final, correct form of the Thom isomorphism theorem then says

Theorem 1.7. Let ξ : V → X be an oriented vector bundle. Then there is a
cohomology class u : Th(ξ)→ HZ such that the induced map

HZ ∧ Th(ξ) HZ ∧ Th(ξ) ∧X+ HZ ∧HZ ∧X+ HZ ∧X+
HZ∧∆ HZ∧u∧X+ µ∧X+

is an isomorphism of HZ-modules.
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2 MU(n) and MU

Definition 2.1. We define MU(n) to be the Thom space of the tautological vector
bundle of BU(n).

We define MU to be the Thom spectrum of the tautological virtual vector bundle
of BU . Equivalently,

MU = colim
n

Σ−2nΣ∞MU(n).

The direct sum map BU × BU → BU induces a map MU ∧MU → MU , which
turns MU into a ring spectrum (and in fact an E∞-ring spectrum).

The crucial insight of Thom was that this spectrum is closely related to cobordism
theory.

Theorem 2.2 (Pontryagin–Thom). Let X be a space. Then MU∗(X+) admits the
following description:

1. A class in MUd(X+) is represented by a d-dimensional stably almost complex
manifold M and a map f : M → X. Addition is given by disjoint union.

2. Two classes f1, f2 are equivalent if there is a cobordism g : N → X between
them.

Proof idea. Given a class in MUd(X+), I explain how to get such a map f : M → X.
By the Whitney embedding theorem.

A map Sd →MU ∧X+ factors through a map Sd → Σ−2nMU(n)∧X+ for some
n, and is thus given a map of spaces φ : Sd+2n → MU(n) ∧ X+, increasing n if
necessary (since Σ2kMU(n) ↪→MU(n+ k)). Recall that

MU(n) ∧X+ = MU(n)×X/{∗} ×X,

where the point on the right is point at infinity. MU(n) also contains the “zero
section” isomorphic to BU(n), and the normal bundle of the zero section is the
tautological bundle of BU(n). Generically, we can choose φ to intersect transversely
in a way that φ−1(BU(n)×X) is a codimension 2n submanifold of Sd+2n, and the
normal bundle, being pulled back from BU(n), has an almost complex structure.
This gives a stably almost complex manifold of dimension d with a map to X. A
homotopy of φ gives a cobordism between such maps.

So in particular, MU∗ = π∗MU is the complex cobordism group. Remarkably,
these groups are entirely computable.

Proposition 2.3.
H∗(MU) = Z[b1, b2, b3, . . .]

π∗(MU) = Z[m1,m2,m3, . . .]

where |mi| = |bi| = 2i. The Hurewicz map π∗(MU)→ H∗(MU) is injective but not
surjective.
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Proof sketch. Since the tautological vector bundle of BU is oriented, the first part
follows from the Thom isomorphism theorem and the standard calculation of the
homology of BU . The homotopy groups follow from a more involved Adams spectral
sequence calculation.

3 Orientations

Definition 3.1. Let E be a ring spectrum, and ξ : V → X a vector bundle. Then
V is E-oriented if there is a “Thom class” u : Th(ξ)→ E such that the induced map
of E-modules

E ∧ Th(ξ) E ∧ Th(ξ) ∧X+ E ∧ E ∧X+ E ∧X+
E∧∆ E∧u∧X+ µ∧X+

is an isomorphism.
This induces isomorphisms

E∗(X+) ∼= E∗(Th(ξ)), E∗(X+) ∼= E∗(Th(ξ))

induced by cupping and capping with u (using the Thom diagonal ∆).

Lemma 3.2. Let f : E → F be a map of ring spectra. Then an E-orientation of ξ
gives rise to an F -orientation of ξ by composition.

Proof sketch. The key input here is that an E-module map ϕ : E ∧ A → E ∧ B
functorially induces an F -module map F ∧A→ F ∧B via the composite

F ∧A F ∧ E ∧A F ∧ E ∧B F ∧ F ∧B F ∧B.F∧ι∧A F∧ϕ F∧f∧B µF∧B

Crucially, this construction does not make use of any coherence; if we had some
sort of coherence, we could simply apply F ∧E (−). One checks that the Thom
isomorphism for F is induced from that for E via this procedure. Functoriality then
ensures the resulting map is also an equivalence.

Definition 3.3. A cohomology theory E is complex oriented if there is a choice of
a Thom class uξ for every complex vector bundle ξ : V → X that

1. is functorial under pullbacks, i.e. f∗uξ = uf∗ξ; and

2. sends direct sums to products, i.e. uξ�ζ = uξ ^ uζ .

Example 3.4. MU is complex oriented. Indeed, if ξ : V → X is a complex vector
bundle, it is classified by a map f : X → BU , and ξ is the pullback of the universal
bundle. Applying Th gives a map

uξ = Th(f) : Th(ξ)→MU.

5



We claim this is a Thom class. We have to show that the composite

MU ∧ Th(ξ) MU ∧ Th(ξ) ∧X+ MU ∧MU ∧X+ MU ∧X+
MU∧∆ MU∧u∧X+ µ∧X+

is an isomorphism. This map is obtained by applying Th to

γ ⊕ ξ γ ⊕ ξ ⊕ 0 γ ⊕ γ ⊕ 0 γ ⊕ 0

BU ×X BU ×X ×X BU ×BU ×X BU ×XBU×∆ BU×f×X ⊕×X

Here γ is the tautological bundle, and when we write a ⊕ b ⊕ c, we really mean
π∗1a⊕ π∗2b⊕ π∗3c.

We can describe the bottom map as sending (v, x) to (v + f(x), x). This has an
inverse given by (v, x) 7→ (v − f(x), x), so is an isomorphism. Hence the induced
map on Thom spaces is also an isomorphism.

The requirement that uξ�ζ = uξ ^ uζ comes from the fact that the multiplication
map MU ×MU →MU is induced by ⊕ : BU ×BU → BU .

Lemma 3.5. Let E be a ring spectrum. Then there is a bijection between

1. ring maps MU → E; and

2. complex orientations of E.

Proof. Since MU is complex oriented, a ring map MU → E gives a complex
orientation of E. Conversely, if E is complex oriented, then since MU is the Thom
spectrum of a complex vector bundle, we get a Thom class u : MU → E. This is a
ring map since the product MU ∧MU → MU is induced by the direct sum, and
the requirement that the Thom class sends direct sums to products is exactly the
statement that MU → E is a ring map.

Lemma 3.6. Let E be complex oriented. Then there is a canonical isomorphism
E∗(CPn+) ∼= E∗[u]/un+1 and E∗(CP∞+ ) ∼= E∗[[u]]. Note that the choice of u depends
on the complex orientation of E.

Proof. We first construct the class u. For n > 0, we know that CPn is the Thom space
of the tautological bundle over CPn−1. So there is a preferred class u ∈ E2(CPn). For
n = 1, the Thom isomorphism theorem tells us this generates E∗(CP1) ∼= E∗−2(S0).
This proves the lemma for n = 1. Note that inductively applying the theorem proves
that E∗(CPn+) ∼= E∗[u]/un+1 as groups, but we want the multiplicative structure as
well.

For n > 1, consider the Atiyah–Hirzebruch spectral sequence for E∗(CPn). We
claim that u is represented by a generator of H2(CPn;E0) ∼= E0. Indeed, if it weren’t,
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then its image when pulled back along CP1 ↪→ CPn would also not be a generator,
which contradicts our previous observation.

Now the E2 page of the Atiyah–Hirzebruch spectral sequence for E∗(CPn+) is
generated as a ring by u and E∗, both of which are permanent. So the Atiyah–
Hirzebruch spectral sequence degenerates and gives the desired isomorphism.

The n =∞ case follows from taking the limit.

Theorem 3.7. There is a bijection between

1. complex orientations of E; and

2. classes u ∈ E2(CP∞) that restrict to an E∗-module generator of E2(CP1) ∼= E0.

Proof sketch. Our previous computation showed that a complex orientation of E
induces such a class. The other direction is more roundabout. As in our previous
argument, the class u forces the Atiyah–Hirzebruch spectral sequence for E∗(CP∞+ )
to degenerate at E2. By the Kronecker pairing, the AHSS for E∗(CP∞+ ) also has to
degenerate at E2.

Now since H∗(MU) is generated as a ring by the image of H∗(Σ
−2MU(1)) =

H∗(Σ
−2CP∞), we know the AHSS for E∗(MU) also has to degenerate at E2, and

so does that for E∗(MU). This gives us a preferred element in E0(MU) which is
equivalently a map MU → E as desired. Playing the same game with E∗(MU ∧MU)
shows that this map is a homotopy ring map.

Corollary 3.8. A even homotopy ring spectrum is always complex orientable.

Proof. The Atiyah–Hirzebruch spectral sequence for CP∞ degenerates at E2 for
degree reasons.

Example 3.9. Complex K-theory is complex orientable.

4 Formal group laws

For the remainder of the talk, I wish to use a bit more algebraic geometry language.
We assume E is a commutative complex oriented ring spectrum. If X is a CW
complex, then E2∗X+ is a ring. We restrict to the evenly graded parts so that it is
actually commutative. If one is concerned, one can take into account all degrees and
forgo the algebro-geometric language, but doing so gains us nothing (this works out
because the spaces we care about only have even cells).

To be honest mathematicians, we should consider E2∗X+ as a topological ring
(or a pro-ring), with the topology given by

E2∗X+ = lim
A⊆X finite

E2∗A+
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For example,
E2∗CP∞+ = lim

n
E2∗CPn = E2∗[[u]],

where the power series ring has the usual topology.
Since we are doing algebraic geometry, we are supposed to apply the functor

Spec to rings. Actually, since we have topological rings, we should apply Spf instead,
which remembers the topology, and end up with a formal scheme. If you don’t know
about Spf, you can pretend it is Spec instead. The upshot is that the functor

X 7→ XE ≡ Spf E2∗X+

is a covariant functor in X. Moreover, if we restrict to spaces for which E∗X+ is a
free E∗-module, such as CPn and complex oriented cohomology theories, this functor
is symmetric monoidal by Künneth’s theorem.

For CP∞, we have
CP∞E = Spf E2∗[[u]].

This as an infinitesimal neighbourhood of 0 ∈ A1 over SpecE2∗, which we denote
Â1. Our first conclusion is thus

Lemma 4.1. A complex orientation of E gives an isomorphism

CP∞E = Â1.

The fact that E is complex orientable tells us CP∞E is abstractly isomorphic to Â1,
and a complex orientation is a choice of isomorphism.

Now recall that X 7→ XE is symmetric monoidal. Moreover, CP∞ has the
structure of an abelian group (in the homotopy category), with the map ⊗ : CP∞ ×
CP∞ → CP∞ classifying the tensor product of line bundles. This turns CP∞E into a
(formal) group scheme.

Definition 4.2. A formal group is a commutative formal group scheme whose
underlying scheme is (locally) isomorphic Â1.

A formal group law is a commutative group scheme where the underlying scheme
is equipped with an isomorphism with Â1.

By convention, an isomorphism of formal group laws is an isomorphism of the
underlying formal groups (that is, it is not required to act as the identity on Â1, or
else they are extremely boring).

Thus, if E is complex orientable, then CP∞E is a formal group. If it is complex
oriented, then CP∞E is given the structure of a formal group law. Different choices of
complex orientations give different but isomorphic formal group laws.

Let us unwrap what it means to be a formal group law. Let R be a ring. A
formal group law is a map

Spf R[[x]]× Spf R[[x]]→ Spf R[[x]]
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satisfying certain properties. Undoing the Spf gives us a continuous map of R-algebras

R[[x]]→ R[[x, y]].

This is uniquely determined by the value of x. Call this x+F y, which is a power
series in x and y. The property of being a commutative group is equivalent to the
conditions

x+F y = y +F x

x+F 0 = 0

(x+F y) +F z = x+F (y +F z).

An isomorphism of formal group laws is given by an automorphism of R[[x]] that
sends one formal group law to the other. Again an automorphism R[[x]]→ R[[x]] is
uniquely specified by the image of x, say f(x), and an isomorphism between +F and
+G is an invertible f such that

f(x+F y) = f(x) +G f(y).

A formal group is then a formal group law up to isomorphism.
Note that if f : R→ S is a map of rings, then a formal group law over R induces

a formal group law over S by applying f to the coefficients of the power series. Since
we are thinking in terms of schemes, we call this “pulling back” the formal group
law from SpecR to SpecS.

Theorem 4.3 (Lazard). There is a universal formal group law. That is, there is a

ring L with a formal group law ĜL on L such that for any other formal group law
Ĝ on a ring R, there is a unique map f : L → R such that Ĝ = f∗ĜL. Moreover,
L ∼= Z[`1, `2, `3, . . .].

The key content of the theorem is the final line. The moduli space of formal
group laws is an affine space!

Recall that MU is the universal complex oriented cohomology theory, and a
complex oriented cohomology theory has a canonical formal group law.

Theorem 4.4 (Quillen). CP∞MU is the universal formal group law.

In general, the formal group of a complex orientable cohomology theory captures
a lot of important information about the theory. It also allows us to perform some
nice computations:

Example 4.5. If E is complex oriented and F is any ring spectrum, then E ∧ F is
also complex oriented, and the formal group law on E ∧ F is pulled back from that
of E.

Thus, if both E and F are complex oriented, then we get two complex orientations
of E∧F , hence two formal group laws. However, since the formal group of a complex
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orientable cohomology theory is well-defined, these two formal group laws must be
isomorphic.

For example, take E = HZ and F = KU . The respective formal group laws
are Ĝa and Ĝm. We then know that π∗(HZ ∧ KU) is a ring on which Ĝa and

Ĝm are isomorphic. Standard theory of formal group laws tells us this is possible
only if the ring is rational (since one has height ∞ and the other has height 1). So
H∗KU = π∗(HZ ∧KU) is rational.

Now consider the rationalization map KU → KUQ. Since H∗KU is already
rational, this map is an isomorphism on integral homology. However, π∗KU is
definitely not rational, so the map is not an isomorphism on homotopy groups. Thus
the cofiber of this map has trivial integral homology, but is non-contractible.
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