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Bott periodicity is a theorem about the matrix groups U(n) and O(n). More
specifically, it is about the limiting behaviour as n→∞. For simplicity, we will focus
on the case of U(n), and describe the corresponding results for O(n) at the end.

In these notes, we will formulate the theorem in three different ways — in terms
of the groups U(n) themselves; in terms of their classifying spaces BU(n); and in
terms of topological K-theory.

1 The groups U and O

There is an inclusion U(n− 1) ↪→ U(n) that sends

M 7→
(
M 0
0 1

)
.

We define U to be the union (colimit) along all these inclusions. The most basic
form of Bott periodicity says

Theorem 1 (Complex Bott periodicity).

πkU =

{
Z k odd

0 k even
.

In particular, the homotopy groups of U are 2-periodic.

This is a remarkable theorem. The naive way to compute the groups πkU(n) is
to inductively use the fiber sequences

U(n) U(n+ 1)

S2n+1
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arising from the action of U(n+ 1) on S2n+1. This requires understanding all the
unstable homotopy groups of (odd) spheres, which is already immensely complicated,
and then piece them together via the long exact sequence. Bott periodicity tells us
that in the limit n→∞, all these cancel out, and we are left with the very simple
2-periodic homotopy groups.

One can define O similarly as the union of the O(n)’s, and the resulting homotopy
groups are 8-periodic.

Theorem 2 (Real Bott periodicity). We have

k mod 8 0 1 2 3 4 5 6 7

πkO Z2 Z2 0 Z 0 0 0 Z

The number theorists in the audience should note (in dismay) that Z2 refers to
the integers mod 2, not the 2-adics.

2 The spaces BU and BO

A better way to think about Bott periodicity is to not look at U, but BU. To
describe BU, we again start with the “unstable” versions BU(n).

BU(n) is defined to be a space such that for any CW complex X, there is a
canonical bijection

[X,BU(n)]↔
{
n dimensional (complex) vector bundles on X

}
.

An explicit model of BU(n) can be described as the Grassmannian of n-planes in
C∞, the countable dimension complex vector space.

This universal property of BU(n) is very useful because it gives us a very geometric
handle on the spaces BU(n). For example, the direct sum and tensor product of
vector bundles are classified by maps

⊕ : BU(n)×BU(m)→ BU(n+m)

⊗ : BU(n)×BU(m)→ BU(nm).

The first question to ask is — how does BU(n) relate to U(n)? Fix any base
point of BU(n), and consider the space of based loops in BU(n), written ΩBU(n).

Proposition 3. ΩBU(n) ∼= U(n).

Proof. The core content of the statement is that clutching functions work. Indeed,
suppose X is a connected based space. Then we have

[X,ΩBU(n)]∗ = [ΣX,BU(n)]∗ = [ΣX,BU(n)],
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where the last equality comes from π0BU(n) = π1BU(n) = 0 (e.g. by inspecting the
construction of BU(n) as a Grassmannian to see it only has cells of dimension ≥ 2).
So the proposition is equivalent to saying that vector bundles on ΣX are the same
as (based) maps X → U(n), which is exactly the clutching construction.∗

Remark. BU(n) is not characterized (up to homotopy) by the above property.
Note, however, that U(n) is in particular a topological monoid, and ΩBU(n) can be
made one by considering loops of all lengths so that composition of loops is strictly
associative. The above homotopy equivalence is then one of topological monoids (or
rather, A∞-spaces). This property does characterize BU(n).

The importance of this proposition is that it allows us to read off the homotopy
groups of BU(n) from those of U(n). Of course, this is not too useful until we pass
on to the limit n → ∞. There is a map BU(n) ↪→ BU(n + 1) given by adding a
trivial line bundle. Under the clutching construction, this corresponds to the map
U(n) ↪→ U(n+ 1) we had previously. We then let

BU = colim
n→∞

BU(n).

In particular, there is a map ∗ = BU(0) → BU which we will choose to be our
canonical basepoint of BU.

Corollary 4. We have

πkBU =

{
Z k 6= 0 even

0 otherwise
.

The direct sum and of vector bundles is compatible with the inclusion BU(n) ↪→
BU(n+ 1), and so gives rise to a map

⊕ : BU×BU→ BU.

We would like a map that comes from tensor products as well, but that is not
compatible with the inclusion, since

(E ⊕ 1)⊗ (F ⊕ 1) 6= E ⊗ F ⊕ 1.

To fix this, we need to think about what BU represents.

Definition 5. A virtual vector bundle is a formal difference of two vector bundles.
More precisely, if X is a finite CW complex, write VectC(X) for the monoid of

vector bundles over X (up to isomorphism) under direct sum. Write KU(X) to be
the group completion of VectC(X). A virtual vector bundle is then an element of
KU(X).

∗ There are more subtleties for the real case since π1BO(n) 6= 0, but we shall not go into that.
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If E is a vector bundle, we write [E] for its image in KU(X). Then every element
in KU(X) is of the form [E]− [F ], and its rank is dimE − dimF .† We also write n
for the n-dimensional trivial vector bundle.

Lemma 6. For any vector bundle E over X, there is some other vector bundle F
such that E ⊕ F is trivial.

Hence, any virtual vector bundle can be written as [E]−n for some vector bundle
E.

Theorem 7. If X is a finite CW complex, then [X,BU] is the group of rank 0
virtual vector bundles, where the group structure comes from the direct sum map
⊕ : BU×BU→ BU.

Proof. Since X is finite, we have

[X,BU] = colim
n→∞

[X,BU(n)].

If a map f : X → BU(n) classifies a vector bundle E, then the correspondence sends
this to [E]− n ∈ K(X).

Corollary 8. If X is a finite CW complex, then

KU(X) ∼= [X,BU× Z].

Proof. Use the Z factor to keep track of the rank, since every virtual vector bundle
is the sum of a rank zero virtual vector bundle plus a trivial bundle.

Now since ⊗ is linear, it induces a map KU(X)×KU(X)→ KU(X), classified
by a map

⊗ : (BU× Z)× (BU× Z)→ BU× Z.

In fact, we get something even better, since the basepoint of BU× Z, corresponding
to the trivial rank 0 vector bundle, kills everything under ⊗, so this factors to give a
map

⊗ : (BU× Z) ∧ (BU× Z)→ BU× Z,

where as always, X ∧ Y = X × Y/X ∨ Y .
This is important, since it induces a ring structure on π∗(BU×Z) — if fi : Ski →

BU× Z, then smashing them together gives

f1 ∧ f2 : Sk1+k2 ∼= Sk1 ∧ Sk2 → (BU× Z) ∧ (BU× Z)
⊗→ BU× Z.

As a group, the ring π∗(BU× Z) is Z in every even degree, and is zero otherwise.
The ring structure is the best you can hope for.

† This should be viewed as a locally constant function on X if X is disconnected.
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Theorem 9 (Complex Bott periodicity).

π∗(BU× Z) ∼= Z[u], deg u = 2.

This has some nice geometric consequences. Observe that π∗(BU × Z) ∼=
π∗(Ω

2(BU × Z)) abstractly as groups, and we know this without using the ring
structure. This does not automatically imply BU×Z ∼= Ω2(BU×Z), since we need a
map that realizes this isomorphism of groups in order to apply Whitehead’s theorem.
The ring structure provides exactly this.

Indeed, let u : S2 → BU× Z be a generator of π2(BU× Z). Then we get a map

S2 ∧ (BU× Z)
f∧1→ (BU× Z) ∧ (BU× Z)

⊗→ (BU× Z).

The adjoint map (BU× Z)→ Ω2(BU× Z) is then multiplication by u, which is an
isomorphism. So

Corollary 10. The map above gives a homotopy equivalence

BU× Z ' Ω2(BU× Z).

This is a geometric incarnation of the Bott periodicity theorem, which says two
spaces are homotopy equivalent.

Given the importance of the map u, it is reassuring to know there is a very
concrete description of it:

Theorem 11. The class u can be chosen to be represented by the map

S2 ∼= CP1 ↪→ CP∞ ∼= BU(1) ↪→ BU ↪→ BU× Z.

Equivalently, it is [γ]− 1 ∈ K(CP1), where γ is the tautological bundle over CP1.

The real version of these results is slightly less pretty.

Theorem 12 (Real Bott periodicity). We have

π∗(BO× Z) ∼= Z[η, α, β]/(2η, η3, α2 − 4β)

where deg η = 1,degα = 4,deg β = 8. Therefore,

BO× Z ∼= Ω8(BO× Z).

3 Topological K-theory

We will end by saying a bit more about the functor KU defined above. Pullback
of vector bundle makes it a contravariant functor on the category of finite CW
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complexes. We can extend this to a functor on all CW complexes by defining it to
be the functor represented by BU× Z, but its values on infinite complexes have less
straightforward descriptions.‡ For technical reasons, we actually want a reduced
version of this — on a based space X, we have

K̃U(X) = [X,BU× Z]∗.

This corresponds to virtual vector bundles that are rank zero on the base point
component. This is really not that important and not worth worrying about.

This functor K̃U behaves like the degree 0 part of a (reduced) cohomology theory.
For example, it satisfies an appropriate form of Mayer–Vietoris. So we will write it
as KU0 instead. The goal is the manufacture a (generalized) cohomology KU whose
degree 0 part is this KU0 we already have. This is called (complex) topological
K-theory, and is of utmost importance in algebraic topology.

We first do it for negative degrees, which is easy. If h∗ is a (reduced) cohomology
theory, then Mayer–Vietoris implies we always have

hn(ΣX) = hn−1(X).

So for n ≥ 0, we can simply define

KU−n(X) = KU0(ΣnX).

The functor KU−n(X) is then represented by Ωn(BU× Z).
The key fact is that Bott periodicity tells us Ω2(BU× Z) ∼= BU× Z. So another

way to state Bott periodicity is that

Theorem 13 (Complex Bott periodicity). There is a canonical isomorphism

KUk(X) ∼= KUk−2(X)

whenever both are defined.

Once we know this, we can simply define the remaining groups by

KUn(X) =

{
KU0(X) n even

KU−1(X) n odd.

We then know automatically that this satisfies properties like Mayer–Vietoris, and
hence is a generalized cohomology theory.

For completeness, we state the corresponding real result as well.

Theorem 14 (Real Bott periodicity). There is a canonical isomorphism

KO0(Σ8X) ∼= KO0(X).

‡ If we have an infinite CW complex X, we can pick an exhaustion by finite subcomplexes. Then the
class in KU(X) restricts to a virtual vector bundle of the form [E]−n on each finite subcomplex.
However, the n needed may be arbitrarily large as we move up the exhaustion, so it cannot be
written as the formal difference as two genuine vector bundles on X.
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