
Borwein–Borwein integrals and sums

Dexter Chua

1 Direct calculation 2

2 Fourier transform perspective 3

3 Sums 5

The sinc function is defined by

sinc(x) =
sin(x)

x
.

A standard contour integral tells us∫ ∞
−∞

sinc(x) dx = π.

Alternatively, we can observe that

sinc(x) =
1

2

∫ 1

−1
eikt dk.

So up to some factors sincx is the Fourier transform of the indicator function of
[−1, 1]. The preceding integral of sincx can be thought of as the value of the Fourier
transform at 0. Applying the Fourier inversion formula and carefully keeping track
of the coefficients gives us the previous calculation.

David and Jonathan Borwein∗ observed that we also have∫ ∞
−∞

sinc(x) sinc
(x

3

)
dx = π,∫ ∞

−∞
sinc(x) sinc

(x
3

)
sinc

(x
5

)
dx = π,∫ ∞

−∞
sinc(x) sinc

(x
3

)
sinc

(x
5

)
sinc

(x
7

)
dx = π.

∗ David Borwein being the father of Jonathan Borwein
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This pattern holds up until∫ ∞
−∞

sinc(x) sinc
(x

3

)
· · · sinc

( x
13

)
dx = π.

Afterwards, we have∫ ∞
−∞

sinc(x) sinc
(x

3

)
· · · sinc

( x
15

)
dx =

467807924713440738696537864469

467807924720320453655260875000
π.

As we keep going on, the value continues to decrease.

1 Direct calculation

Turns out it is possible to calculate the integrals above by pure brute force, and this
gives explicit formulas for the integrals as we see above.

In general, let a0, a1, a2, . . . , an be a sequence of positive real numbers, and
consider the integral ∫ ∞

−∞

n∏
k=0

sinc(akx) dx.

Let us put aside the 1
x factors for a moment, and expand out

∏n
k=0 sin(akx):

n∏
k=0

sin(akx) =
1

(2i)n+1
(eia0x − e−ia0x)

n∏
k=1

(eiakx − e−iakx)

=
1

(2i)n+1

∑
γ∈{−1,1}n

εγ(eibγx − (−1)ne−ibγx),

where

bγ = a0 +

n∑
k=1

γkak, εγ =

n∏
k=1

γk.

Note that each of the terms in the right-hand sum is some sort of trigonometric
function, depending on the value of n mod 2.

The original integral was∫ ∞
−∞

x−n−1
n∏
k=0

sin(akx) dx.

Since sin(akx) has a simple zero at x = 0, we know from this expression that we can
integrate this by parts n times and have vanishing boundary terms:∫ ∞

−∞
x−n−1

n∏
k=0

sin(akx) dx =
1

n!

∫ ∞
−∞

1

x

dn

dxn

n∏
k=0

sin(akx) dx.
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We now use the expression above to compute this n-fold derivative, and get∫ ∞
−∞

n∏
k=0

sin(akx)

x
dx =

1

n!

∫ ∞
−∞

1

x

1

2n

∑
γ∈{−1,1}n

εγb
n
γ sin(bγx) dx

=
π

2nn!

∑
γ∈{−1,1}n

εγb
n
γ sign(bγ).

We claim this is equal to π
a0

when a0 ≥
∑n
k=1 ak, and smaller otherwise. Indeed, this

is exactly the condition that all the bγ are positive, so that the sign term disappears.
The remaining claim is then that

∑
γ∈{−1,1}

εγb
n
γ = 2nn!

n∏
k=1

ak.

Indeed, this follows by considering the nth Taylor coefficient of the equality

ea0t
n∏
k=1

(eakt − e−akt) =
∑

γ∈{−1,1}n
εγe

bγt,

where on the left we use that eakt − e−akt = 2akt.

2 Fourier transform perspective

The preceeding calculation was not very enlightening, but at least it gives precise
numbers. There is a more enlightening approach, beginning with our previous
observation that sinc is the Fourier transform of the indicator function of [−1, 1], up
to some factors.

To get this going, let us first get our conventions straight. We define our Fourier
transforms by

F{f}(k) = f̂(k) =

∫ ∞
−∞

f(x)e−2πikx dx

Then for any function f , we have∫ ∞
−∞

f(x) dx = f̃(0).

Why is this useful? In general, it is difficult to say anything about the integral of
products. However, the Fourier transform of a product is the convolution of the
Fourier transforms, which is an operation we understand pretty well.
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With our convention, we have

F{sinc ax}(k) =

{
π
a |k| < a

2π

0 otherwise
≡ χa/π(k).

Here for any a > 0, the function χa(x) is given by

a
2−a2

1
a

Note that the area under χa is always 1. Fourier transforms take products to
convolutions, and convolving with χa is pretty simple:

(χa ∗ f)(x) =
1

a

∫ x+a/2

x−a/2
f(u) du.

In words, the value of χa ∗f at x is the average of the values of f in [x−a/2, x+a/2].
With this in mind, we can look at∫ ∞

−∞

n∏
k=0

sinc(akx) dx = (χa0/π ∗ χa1/π ∗ · · · ∗ χan/π)(0).

We start with the function χa0 , which is depicted above. Convolving with χa1 gives
a piecewise linear function

Crucially, when a1 ≤ a0, the value at 0 is unchanged, since the function is constant
on 1

π [−a0, a0] ⊇ 1
π [−a1, a1]. The resulting function is constantly π

a0
on the interval

1
π [−(a0 − a1), a0 − a1].

When we further convolve with χa2/π, if a1 + a2 ≤ a0, the resulting function is

constantly π
a0

on the interval 1
π [−(a0 − a1 − a2), a0 − a1 − a2]. In general, this tells

us that as long as a0 ≥ a1 + · · ·+ an, the integral will still be π
a0

, and gets smaller
afterwards.
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3 Sums

Let us move on to the series version. We also claim that∑
n∈Z

sinc(n) = π.

We also have ∑
n∈Z

sinc(n) sinc
(n

3

)
= π

∑
n∈Z

sinc(n) sinc
(n

3

)
sinc

(n
5

)
= π.

This continues to hold until sinc( x13 ) but fails when we include the sinc
(
x
15

)
term.

Coincidence? We might hope, näıvely, that the correct result is

∑
n∈Z

N∏
k=0

sinc

(
n

2k + 1

)
=

∫ ∞
−∞

N∏
k=0

sinc

(
x

2k + 1

)
dx.

This is in fact true, for N ≤ 40248. Number theorists will be delighted to learn that
this follows from the Poisson summation formula.

Theorem 3.1 (Poisson summation formula). Let f : R→ R be compactly supported,
piecewise continuous and continuous at integer points. Then∑

n∈Z
f(n) =

∑
n∈Z

f̂(n).

The previous observation follows from taking f(x) = F
{∏N

k=0 sinc
(

x
2k+1

)}
,

which satisfies the hypothesis of the theorem (it is in fact continuous for n > 0). The

Fourier inversion theorem then tells us f̂(−x) =
∏N
k=0 sinc

(
x

2k+1

)
. So the right-hand

side is the sum in question, and f(0) is the Borwein integral. Our previous analysis

shows that the support of f̂ is 1
2π [−(a0 + · · ·+ an), (a0 + · · ·+ an)]. So f̂ vanishes at

non-negative integers whenever
∑

1
2k+1 < 2π.

Note. It is common for the theorem to be stated for Schwarz functions instead.
However, our function is not smooth, but the same proof goes through under our
hypothesis.

Corollary 3.2. ∑
n∈Z

N∏
k=0

sinc akn =

∫ ∞
−∞

N∏
k=0

sinc akx dx.

if
∑
ak < 2π.
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Proof of theorem. Set

g(x) =
∑
n∈Z

f(x+ n).

Then, g(0) =
∑
n∈Z f(n). Note that the sum converges since g is compactly supported,

and is continuous at 0 since f is continuous at integer points. Of course, it is also
piecewise continuous, since in each open neighbourhood, the sum is finite. So we
know the Fourier series of g converges at 0. Recall that the Fourier series is

g(x) =
∑
k∈Z

ĝke
2πikx,

where

ĝk =

∫
R/Z

e−2πikxg(x) dx

=
∑
a∈Zn

∫
[0,1]

e−2πikxf(x+ a) dx =

∫
R
e−2πikxf(x) dx = f̂(k).

So ∑
n∈Z

f(n) = g(0) =
∑
k∈Z

ĝk =
∑
k∈Z

f̂(k).
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